

1

Chapter – 1

Introduction to XML

2

Before we continue with the XML, we have to revise certain fact about the terms like

HTML and JavaScript.

HTML

It stands for HyperText Markup Language. It is used to design web pages using a

markup language. HTML is the combination of Hypertext and Markup language.

Hypertext defines the link between the web pages. A markup language is used to define

the text document within tag which defines the structure of web pages. This language is

used to annotate (make notes for the computer) text so that a machine can understand it

and manipulate text accordingly. Most markup languages (e.g. HTML) are human-

readable. The language uses tags to define what manipulation has to be done on the text.

HTML is a markup language used by the browser to manipulate text, images, and other

content, in order to display it in the required format. HTML was created by Tim Berners-

Lee in 1991. The first-ever version of HTML was HTML 1.0, but the first standard version

was HTML 2.0, published in 1999.

Elements, tags, and attributes are basic concepts in HTML.

HTML element is a main structural unit of a web page. HTML tags are used to define

HTML elements, and attributes provide additional information about these elements.

HTML tags are used to structure website content (text, hyperlinks, images, media, etc).

Tags are not displayed in the browsers, they only “instruct” browsers how to show the

content of the web page. There are over 100 tags in HTML, and can be used for styling the

web content like text, images, videos, audios etc. HTML tags are written in angle brackets

(e.g <html>).

HTML attributes are added to an HTML element to provide additional information about

it. For example, to define an image with tag, we can use attributes like:

src, height, width attributes to provide information about its source, height, width

correspondingly.

JavaScript

JavaScript is a scripting or a programming language, allowing developers to perform

complex features on web pages. Initially, this language was created for making web pages

alive. In JavaScript, the programs are called scripts. One can write them in the HTML of a

web page, then it will automatically run once the page loads. At this point, JavaScript is

completely different from another language, called Java.

Initially, when JavaScript was created, it was called “LiveScript”. Then, as Java was

extremely popular in that period, then it was decided to call it JavaScript to position it

relative to Java. But, over the years, JavaScript has transformed into a completely

independent language, with its specification, known as ECMAscript, having no relation

to Java. Modern JavaScript can both work in the browser and on the server. Basically, it

can run on any device that has a specific program known as the JavaScript engine.

https://www.w3docs.com/learn-html/html-elements.html
https://www.w3docs.com/learn-html/html-basic.html
https://www.w3docs.com/learn-html/html-attributes.html
https://www.w3docs.com/learn-html/html-html-tag.html
https://www.w3docs.com/learn-html.html

3

What In-browser JavaScript Does

Modern JavaScript is considered a safe programming language. It never provides low-

level access to the memory or CPU as it was made for the browsers that don’t require it.

The capabilities of this language highly rely on the environment it runs in. For example,

Node.js includes functions allowing JavaScript to write and read arbitrary files,

implement network requests, and so on. In-browser JavaScript does anything related to

web page manipulation.

For example, with in-browser JavaScript, you can do the following:

1. Adding new HTML to the page, changing the content, modifying the styles.

2. Reacting to use actions, running on mouse clicks, key presses, and more.

3. Sending requests over the network to remote servers.

4. Getting and setting cookies, asking questions to visitors, sending messages.

5. Remembering the data on the client-side.

Limitations of In-browser JavaScript

The capabilities of JavaScript are limited for the purpose of keeping the user’s safety. With

it, an evil web page can’t access private information or harm the user’s data.

Here are some examples of such restrictions:

 JavaScript has no direct access to OS functions. It can’t read and write arbitrary

files on the hard disc, copy or execute them.

 Different windows/tabs don’t recognize each other. JavaSCript from one page is

not able to access the other one, in case they are from different sites. It’s known as

“Same Origin Policy”.

 JavaScript allows communication over the net to the server from where the page

comes from. But, its capability of receiving data from the other site is prohibited.

That’s a safety limitation.

What Makes JavaScript Specific

There are at least three perfect things about JavaScript:

1. It supports complete integration with CSS and HTML.

2. It provides straightforward ways of doing simple things.

3. It is supported by almost all the major browsers and is performed by default.

It is the exclusive browser technology that encompasses the three great things above.

In modern programming, JavaScript is the most widespread tool that helps to create

browser interfaces. It also allows creating mobile applications, servers, and much more.

Our JavaScript book consists of several sections that cover all the information you need

to learn this unique programming language. Each of the chapters includes both the theory

and practical cases to make it easier for beginners to grasp the language.

https://www.w3docs.com/learn-css.html

4

XML (eXtensible Markup Language)

XML is an independent tool for storing and transporting data other than the hardware

and the software. It doesn’t depend on the platform and the software (programming

language). You can write a program in any language on any platform (Operating System)

to send, receive or store data using XML. XML is a markup language for documents containing

structured information.

Structured information contains both content (words, pictures, etc.) and some indication

of what role that content plays (for example, content in a section heading has a different

–meaning from content in a footnote, which means something different than content in a

figure caption or content in a database table, etc.). Almost all documents have some

structure.

A markup language is a mechanism to identify structures in a document. The XML

specification defines a standard way to add markup to documents.

Why XML?

Platform Independent and Language Independent: The main benefit of xml is that you

can use it to take data from a program like Microsoft SQL, convert it into XML then share

that XML with other programs and platforms. You can communicate between two

platforms which are generally very difficult.

The main thing which makes XML truly powerful is its international acceptance. Many

corporation use XML interfaces for databases, programming, office application mobile

phones and more. It is due to its platform independent feature.

1.1 Characteristics and Use of XML

XML was designed for describing well-formed data. Also XML have some strict rules. That

rules follow every XML document. Following are some characteristics of the XML.

Characteristics of XML

 XML is extensible

Unlike HTML, XML applications allows to have user defined tags in structured

manner. User is able to add or remove the tags in the defined structure. Older one with

predefined structure as well updated one, both will work perfectly.

example1.1 example1.1(updated)

<?xml version="1.0" encoding="utf-8"?>

<bca>

 <subject>405 : Web Design-2</subject>

 <credit>4</credit>

 <hoursperweek>4 Hrs</hoursperweek>

 <body>Web Design requires designers to
create graphics, typography as well as images
which are used only on the World Wide Web.
While creating any design, web designers need
to maintain balance between creating a good

<?xml version="1.0" encoding="utf-8"?>

<bca>

 <subject>405 : Web Design-2</subject>

 <credit>4</credit>

 <hoursperweek>4 Hrs</hoursperweek>

 <objective>To make students aware of web
terminology and website designing tools.
Student can understand and implement the
real functions of website development.
</objective>

5

design as well as the speed and efficiency for
the webpage/website. </body>

</bca>

 <body>Web Design requires designers to
create graphics, typography as well as images
which are used only on the World Wide Web.
While creating any design, web designers need
to maintain balance between creating a good
design as well as the speed and efficiency for
the webpage/website. </body>

</bca>

 XML focuses on data rather than how it looks

One of the reason, XML is popular because it focuses on data rather than data

presentation. The other markup language such as HTML is used for data

presentation. This separates the data and its presentation part and gives us the

freedom to present the data, the way we want, once we receive it using XML.

Two or more systems can receive the same data from a same XML and present it

in a different way using other markup language such as HTML.

 XML is public standard

XML was developed by W3C (World Wide Web Consortium) organization as an

open standard under February 1998.

 XML is easy and efficient for data sharing

Since XML is software and hardware independent, it is easier to share data

between different systems with different hardware and software configuration.

Any system with any programming language can read and process a XML

document.

 XML is compatible with other markup languages like HTML

It is so much easier to read the data from XML and display it on an GUI (graphical

user interface) using HTML markup language.

When the data changes over time, we need not to make any changes in the HTML.

 XML supports platform transition

The main reason why changing to new systems and platform is challenging,

because it involves the headache of data conversion between incompatible

formats which often results in data loss. XML simplifies this process as the data is

transported on new upgraded systems without any data loss.

 XML supports validation

A XML document can be validated using DTD or XML schema. This ensures that

the XML document is syntactically correct and avoids any issues that may arise

due to the incorrect XML.

 XML supports Unicode

XML supports Unicode that allows it to communicate almost any information in

any written human language.

6

 XML adopts technology advancements

The reason why XML is popular and being used from a very long time is because,

it can adapt to the new technologies because of its platform-independent nature.

Uses of XML

XML is playing a vital role in the web. XML has a variety of uses in the sectors like

Web, e-business, and mobile applications. Few XML-based Languages include XHTML,

RSS, SMIL, WSDL, WAP, and SOAP. XML files are used to develop database-driven types.

Due to their Flexibility, they could transfer data without missing descriptive information

among corporate databases. Few examples like, with XML business-to-business

applications share information electronically between buyers and sellers. It’s an excellent

choice for exchange formats with small collections of data.

It can be described as follows:

 XML can work behind the scene to simplify the creation of HTML documents for

large web sites.

 XML can be used to exchange the information between organizations and systems.

 XML can be used for offloading and reloading of databases.

 XML can be used to store and arrange the data, which can customize your data

handling needs.

 XML can easily be merged with style sheets to create almost any desired output.

 Virtually, any type of data can be expressed as an XML document.

1.2 XML syntax (Declaration, tags, elements)

XML syntax rule is used while writing an XML document or an XML application. It is a

very simple and straight forward to learn and code.

Check out the below sample code for understanding of the XML syntax rules:

Sample Code (example 1.2)

<?xml version="1.0" encoding="UTF-8"?>
<assign>

 <to>SYBCA</to>
 <from>Faculty</from>
 <subject>405 : WebDesign-1</subject>
 <info>Each Assignment of Subject carries 30 marks. </info>

</assign>

XML Declaration / Prolog rules

<?xml version="1.0" encoding="UTF-8"?>

 This line is called XML Prolog or XML declaration.

 This line is optional i.e., it can be either used or not in an XML document. However,

it should be the very first line if used.

7

 The version="1.0" is the version of the XML currently used. There are various

versions of XML available.

 The encoding="UTF-8" specifies the character encoding used while writing an

XML document, for example, êèé is for French and so on. Its default value is “UTF-

8”.

 This declaration is case sensitive for example “xml” should must be in lower case

in.

XML Root element rules

Every XML files should have one or more Root elements to avoid error.

 In the example 1.2 stated above the Root element is <assign> and all the remaining

elements <to>, <from>,<subject>,<info> are the child elements and reside within

the root element <assign>.

 It is case sensitive.

XML Element rules

 The XML elements should have a closing element for example <info category =

“internal”>Sample code</info> is correct but <info category = “internal”>

Sample code is not correct because it does not contain the closing element and it

will throw an error and vice-versa.

 The elements in XML should be nested properly otherwise it will throw an error.

For example <to> <from> VBP </from> </to> is nested correctly but <to>

<from> VBP </to> </from> is wrong because if <from> is opened inside the <to>

element then this should also end inside of the </to> element.

 It is also case sensitive i.e., the starting and closing element should be in the same

case. For example <to>….</to> is correct but <to>…..</To> is not correct and it

will throw an error.

XML Attribute rules

 The XML attribute is having two part one is Name and other is its value. It resides

inside of the opening of an XML element. For example: <info category = “internal”>

Each Assignment of Subject carries 30 marks.</info>

Here category is the attribute name and internal is its value and the attribute value

should either be in a single quotation or in double quotation otherwise it will

throw an error. The Attribute Name is written without any quotation.

 The XML attribute is also case sensitive.

 An XML element can have multiple attributes but cannot have the same attribute

names in the same element.

 For example: <info category=”internal” sem=“IV”> Each Assignment of Subject

carries 30 marks. </info>

8

Above attributes is correct because of having multiple attributes with the different

attribute name.

 <info category=”internal” category=“IV”> Each Assignment of Subject carries 30

marks. </info>

Above attribute is wrong because of having the same attribute name in a single

element.

XML Tags

XML tags are the important features of XML document. It is similar to HTML but XML is

more flexible then HTML. It allows to create new tags (user defined tags). The first

element of XML document is called root element. The simple XML document contain

opening tag and closing tag. The XML tags are case sensitive i.e. <root> and <Root> both

tags are different. The XML tags are used to define the scope of elements in XML

document.

XML Tags Property Rules

 Every XML document must have a root tag which enclose the XML document. It is

not necessary to name of root tag is root. The name of root tag is any possible tag

name.

 The XML document must have start-tag, so first starting tag is known as root tag.

The opening tag started with < bracket followed by tag name or element name and

close with > bracket.

 The tag which is started by start tag must end with the same tag with forward slash

(end tag), or in other words every XML document must be ended with end-tag.

The end tag started with < followed by / and its pair tag name ended with >

 In XML, tags are case sensitive. It means that <Root> and <root> both are different

tags.

 The tag which contains no content are known as empty tags.

 XML tag must be close in appropriate order. For example, an XML tag opened

inside another element must be closed before the outer element is closed.

1.3 Root Element, Case Sensitivity

 XML document must have a root element. A root element can have child elements

and sub-child elements. We already have discussed it in detail on page. 7(Previous page).

 Some basic rules of XML are mentioned as follows:

 XML is Case Sensitive

 While defining the tags in XML we have to keep in mind that the tags which

we defined must be strictly case sensitive. If a single letter in the tag name differs

in cases for starting and ending it will be considered as an invalid XML declaration.

9

 XML Comments

 XML comments are just like HTML comments. We know that the comments

are used to make codes more understandable other developers.

 XML Comments add notes or lines for understanding the purpose of an

XML code. Although XML is known as self-describing data but sometimes XML

comments are necessary.

Rules for adding XML comments

o Don't use a comment before an XML declaration.

o You can use a comment anywhere in XML document except within attribute

value.

o Don't nest a comment inside the other comment.

 No overlapping for elements in XML

 All the elements in XML should be properly nested and they should not

overlap.

 White-spaces are preserved in XML

 Unlike HTML that doesn’t preserve white space, the XML document

preserves white spaces.

1.4 XML Document

 XML Document forms the full structure of xml formatted data composed with

prolog and root element nested with other elements. There would be only one root

element, where root element encloses many other elements inside the final inner element

holds the data. XML Document can be divided as three components.

 They are:

1. Prolog

2. Elements (Root or Other)

3. Data

 Below is the example of Students XML document with the root element “students”.

students.xml (example 1.3)

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<?xml-stylesheet type="text/css" href="/style/design"?>

<!-- This is a comment -->

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0

Strict//EN""http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<students>

 <stud>

 <name> Amit</name>

 <city> Surat</city>

10

 </stud>

 <stud>

 <name> Manish</name>

 <city> Bharuch</city>

 </stud>

</students>

 In the above example 1.3,

Document Prolog —

 <?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<?xml-stylesheet type="text/css" href="/style/design"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0

Strict//EN""http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Root Element — <students>

Other Elements — <stud> , <name> , <city>

Data — Amit, Surat, Manish, Bharuch

Let’s See above concepts in descriptive manner.

1.4.1 XML Prolog section

 XML Prolog is the component added in the beginning of an XML document.

Otherwise, we can say that whatever it appears before the document’s root element

can be considered as Prolog. XML Prolog includes XML declaration, DOCTYPE and

comments, processing instructions too. (See example 1.3)

 DOCTYPE is used to mention the Document Type Definition and it is used for

validation purpose. We could call it as a valid XML if it get validated through DTD. DTD

will consist the structure of an XML document. DTD defines the elements to be used

in the XML document. (See example 1.3)

<!DOCTYPE students

[

<!ELEMENT students (stud)>

<!ELEMENT stud (name,city)>

<!ELEMENT name (#DATA)>

<!ELEMENT city (#DATA)>

]>

1.4.2 XML Element section (Root, Other elements)

 XML Element is the main component which holds the data from start tag till end

tag. It is used as a container to store text elements, attributes, media objects etc or in

case of empty elements it is delimited by an empty tag. Every XML documents contain

at least one element whose scopes are delimited by start and end tags. Every XML

document can have only one root element. In the above shown example 1.3 there is

one root element listed as <students>. And the root element is able to hold other sub

11

elements. XML document consists one or more elements enclosed in root element.

Elements naming represent the self-explanatory form of data inside it. Elements

contains attributes which are used to specify additional information about the

element. In the above shown example 3, inner elements are listed as <stud>, <name>,

<city>.

Syntax

<element-name attributes> Contents...</element-name>

 In the syntax above the attributes are used to define the XML element property

and these attributes are separated by white space. It associates the name with a value,

which is a string of characters.

Empty Elements

 An element in XML document which does not contains the content is known as

Empty Element. The basic syntax of empty element in XML as follows:

Syntax

<element-name attributes></element-name>

OR

<element-name attributes / >

Rules of XML elements

There are some rules to create XML elements which are given below:

 An element can contain alphanumeric values or characters. But only three special

characters are required in the names these are hyphen, underscore and period.

 Names are case sensitive. It means lower case letters have different meaning and

upper case characters have different meaning. For example city, City, CITY are

different names.

 Both start and end tags for elements need to be same.

 An element, which is a container, can contain text or elements

Data

 An XML element hold the value which is considered as data value.

1.5 XML Declaration and Rules of Declaration

 XML documents can contain an XML declaration that if present, must be the first

construct in the document. An XML declaration is made up of as many as three

name/value pairs, syntactically identical to attributes. The three attributes are a

mandatory version attribute and optional encoding and standalone attributes. The order

of these attributes within an XML declaration is fixed.

12

Syntax

<?xml

 version = "version_number"

 encoding = "encoding_declaration"

 standalone = "standalone_status"

?>

The XML declaration begins with the character sequence <?xml and ends with the

character sequence ?>. Note that although this syntax is identical to that for processing

instructions, the XML declaration is not considered to be a processing instruction.

All XML declarations have a version attribute with a value that must be 1.0

The character encoding used for the document content can be specified through the

encoding attribute. XML documents are inherently Unicode, even when stored in a non-

Unicode character encoding. The XML recommendation defines several possible values

for the encoding attribute. For example, UTF-8, UTF-16, ISO-10646-UCS-2, and ISO-

10646-UCS-4 all refer to unicode/ISO-10646 encodings, whereas ISO-8859-1 and ISO-

8859-2 refer to 8-bit Latin character encodings. Encodings for other character sets

including Chinese, Japanese, and Korean characters are also supported. It is

recommended that encodings be referred to using the encoding names registered with

the Internet Assigned Numbers Authority (IANA). All XML processors are required to be

able to process documents encoded using UTF-8 or UTF-16, with or without an XML

declaration. The encoding of UTF-8 and UTF-16 encoded documents is detected using the

Unicode byte-order-mark. The XML declaration is mandatory if the encoding of the

document is anything other than UTF-8 or UTF-16. In practice, this means that documents

encoded using US-ASCII can also omit the XML declaration because US-ASCII overlaps

entirely with UTF-8.

Only one encoding can be used for an entire XML document. It is not possible to “redefine”

the encoding part of the way through. If data in different encodings need to be

represented, then external entities should be used.

If an XML document can be read with no reference to external sources, it is said to be a

stand-alone document. Such documents can be annotated with a standalone attribute

with a value of yes in the XML declaration. If an XML document requires external sources

to be resolved to parse correctly and/or to construct the entire data tree (for example, a

document with references to external general entities), then it is not a stand-alone

document. Such documents may be marked standalone='no', but because this is the

default, such an annotation rarely appears in XML documents.

Rules of XML Declaration

 An XML declaration should abide with the following rules −

13

 If the XML declaration is present in the XML, it must be placed as the first line in

the XML document.

 If the XML declaration is included, it must contain version number attribute.

 The Parameter names and values are case-sensitive.

 The names are always in lower case.

 The order of placing the parameters is important. The correct order is: version,

encoding and standalone.

 Either single or double quotes may be used.

 The XML declaration has no closing tag i.e. </?xml>

14

Chapter – 2

jQuery Fundamentals

15

2.1 Introduction and Basics

jQuery is a JavaScript framework; which purpose is to make it much easier to use

JavaScript on your website. You could also describe jQuery as an abstraction layer, since

it takes a lot of the functionality that you would have to write many lines of JavaScript to

accomplish and wraps it into functions that you can call with a single line of code. It's

important to note that jQuery does not replace JavaScript, and while it does offer some

syntactical shortcuts, the code you write when you use jQuery is still JavaScript code.

jQuery is a client-side JavaScript library that abstracts away browsers’ different

implementations into an easy-to-use API. What jQuery does best is to interact with the

DOM (add, modify, remove elements on your page), do AJAX requests, create effects

(animations) and so forth. It does not provide an application framework, it’s merely a

tool amongst others that should be used what it’s meant to be used for. However, there’s

a plethora of plug-ins due to a thriving community, and there’s pretty much a plug-ins for

anything you can think of.

With that in mind, you should be aware that you don't need to be a JavaScript

expert to use jQuery. In fact, jQuery tries to simplify a lot of the complicated things from

JavaScript, like AJAX calls and DOM manipulation, so that you may do these things

without knowing a lot about JavaScript.

There are a bunch of other JavaScript frameworks out there, but as of right now,

jQuery seems to be the most popular and also the most extendable, proved by the fact

that you can find jQuery plug-ins for almost any task out there. The power, the wide range

of plug-ins and the beautiful syntax is what makes jQuery such a great framework. Keep

reading to know much more about it and to see why we recommend it.

JQUERY

jQuery is a fast and concise JavaScript Library created by John Resig in 2006 with

a nice motto −Write less, do more. jQuery simplifies HTML document traversing, event

handling, animating, and Ajax interactions for rapid web development. jQuery is a

JavaScript toolkit designed to simplify various tasks by writing less code.

FEATURES OF JQUERY

 DOM manipulation − The jQuery made it easy to select DOM elements, traverse them

and modifying their content by using cross-browser open source selector engine

called Sizzle.

 Event handling − The jQuery offers an elegant way to capture a wide variety of

events, such as a user clicking on a link, without the need to clutter the HTML code

itself with event handlers.

 AJAX Support − The jQuery helps you a lot to develop a responsive and feature-rich

site using AJAX technology.

16

 Animations − The jQuery comes with plenty of built-in animation effects which you

can use in your websites.

 Lightweight − The jQuery is very lightweight library - about 19KB in size Minified

and gzipped.

 Cross Browser Support − The jQuery has cross-browser support, and works well in

IE 6.0+, FF 2.0+, Safari 3.0+, Chrome and Opera 9.0+

 Compatibility All Dynamic Languages - jQuery script can be use with all most

Dynamic Web Languages like PHP, ASP, JSP, CGI etc.

 Latest Technology − The jQuery supports CSS3 selectors and basic XPath syntax.

HOW TO USE JQUERY?

There are two ways to use jQuery.

 Local Installation − You can download jQuery library on your local machine and

include it in your HTML code.

 CDN Based Version − You can include jQuery library into your HTML code directly

from Content Delivery Network CDN.

LOCAL INSTALLATION

 Go to the https://jquery.com/download/ to download the latest version available.

 Now put downloaded jquery-2.1.3.min.js file in a directory of your website, e.g.

/jquery.

Example

Now you can include jquery library in your HTML file as follows −

<html>
<head>
<title>The jQuery Example</title>
 <script type = "text/javascript" src = "/jquery/jquery-2.1.3.min.js"></script>

<script type = "text/javascript">
 $(document).ready(function()
 {
 document.write("Hello, World!");
 });

</script>
</head>
<body>
 <h1>Hello</h1>
</body>
</html>

https://jquery.com/download/

17

CDN BASED VERSION

You can include jQuery library into your HTML code directly from Content
Delivery Network CDN. Google and Microsoft provides content deliver for the latest
version.

Example

Now let us rewrite above example using jQuery library from Google CDN.

<html>
<head>
 <title>The jQuery Example</title>
 <script type = "text/javascript"
 src = "http://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"></script>
 <script type = "text/javascript">
 $(document).ready(function(){
 document.write("Hello, World!");
 });
 </script>
 </head>
 <body>
 <h1>Hello</h1>
 </body>
</html>

INSTALLATION OF JQUERY

 First of all we have to need jQuery library file. Download latest version

of jquery.js file from www.jquery.com Website.

 Current version is 1.8.0 is Select the Production (32KB, Minified and

Gzipped) and click on Download jquery-1.8.0.min.js. Following is the list of available

jQuery versions on the site

 Download jquery-1.8.0.min.js (Current Version)

 Download jquery-1.7.2.min.js

 Download jquery-1.7.1.min.js

 Download jquery-1.6.1.min.js

 Download jquery-1.6.min.js

 Download jquery-1.5.2.min.js

 Download jquery-1.5.1.min.js

 Download jquery-1.5.min.js

 Download jquery-1.4.4.min.js

http://code.jquery.com/jquery-1.8.0.min.js
http://code.jquery.com/jquery-1.8.0.min.js
http://code.jquery.com/jquery-1.7.2.min.js
http://code.jquery.com/jquery-1.7.1.min.js
http://code.jquery.com/jquery-1.6.1.min.js
http://code.jquery.com/jquery-1.6.min.js
http://code.jquery.com/jquery-1.5.2.min.js
http://code.jquery.com/jquery-1.5.1.min.js
http://code.jquery.com/jquery-1.5.min.js
http://code.jquery.com/jquery-1.4.4.min.js

18

 You can rename your file to jquery.js for simplicity and put it on the root

directory of your website. Following is a small example of using it.

<html>

<head>

<title>The jQuery Structure</title>

<script type="text/javascript" src="jquery.js"></script>

 <script type="text/javascript">

 /* add needed javascript code */

 </script>

</head>

<body>

<!-- Some HTMl code may be written here -->

</body>

</html>

HOW TO CALL A JQUERY LIBRARY FUNCTIONS?

As almost everything we do when using jQuery reads or manipulates the

document object model (DOM), we need to make sure that we start adding events etc. as

soon as the DOM is ready.

If you want an event to work on your page, you should call it inside the

$(document).ready() function. Everything inside it will load as soon as the DOM is loaded

and before the page contents are loaded.

To do this, we register a ready event for the document as follows −

$(document).ready(function() {
 // do stuff when DOM is ready
});

To call upon any jQuery library function, use HTML script tags as shown below −

<html>

 <head>

 <title>The jQuery Example</title>

 <script type = "text/javascript"

 src = "http://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"></script>

 <script type = "text/javascript" language = "javascript">

 $(document).ready(function() {

 $("div").click(function() {alert("Hello, world!");});

 });

 </script>

 </head>

 <body>

 <div id = "mydiv">

 Click on this to see a dialogue box.

 </div>

 </body>

</html>

19

HOW TO INCLUDE EXTERNAL SCRIPT USING JQUERY?

It is very good way to write the script in external page and then after linked in the

document. It main benefit is reducing complex coding and easy to understand and

another benefit is external script is use one or more documents to reduce the size of main

document.

/* Save this Filename: external_demo.js */
 $(document).ready(function()
 {
 $("div").click(function()
 {
 alert("This Example is External jQuery..!");
 });
 });

Now we can include external_demo.js file in our main html document.

<html>
<head>
<title>The External jQuery Example</title>
 <script type="text/javascript"
 src="../jquery.min.js"></script>
 <script type="text/javascript"
 src="external_demo.js"></script>
</head>
<body>
<div id="ex1">
Click here to open Dialogue Box.
</div>
</body>
</html>

2.1.1 Advantages of jQuery and Syntax

Advantages

 Easy to learn: jQuery is easy to learn because it supports same JavaScript style

coding.

 Write less do more: jQuery provides a rich set of features that increase developers'

productivity by writing less and readable code.

 Excellent API Documentation: jQuery provides excellent online API documentation.

 Cross-browser support: jQuery provides excellent cross-browser support without

writing extra code.

 Unobtrusive: jQuery is unobtrusive which allows separation of concerns by

separating html and jQuery code.

Syntax

jQuery syntax is made by using HTML elements selector and perform some action

on the elements are manipulation in Dot sign(.).

20

jQuery syntax: $(selector).action()

 $ sign define the jQuery,

 Selector define the Query Elements in HTML document, and

 action() define the action performed on the elements.

JQUERY BASIC SYNTAX EXAMPLES

$("p").hide()

 The jQuery hide() function, hiding all <p> elements.

Code Output

<html>

<head>

 <script type="text/javascript" src="jquery.js">

</script>

 <script type="text/javascript">

 $(document).ready(function() {

 $("button").click(function() {

 $("p").hide();

 });

 });

 </script>

</head>

<body>

 <p>This is a First Paragraph.</p>

 <p>This is a Second Paragraph.</p>

 <button>Click Me to Hide Above All

Paragraph</button>

</body>

</html>

$("this").hide()

 The jQuery hide() function, hiding current(this) element.

Code Output

<html>

<head>

<script type="text/javascript" src="jquery.js">

</script>

<script type="text/javascript">

$(document).ready(function()

{

 $("button").click(function()

http://www.way2tutorial.com/jquery/try/run_it.php?filename=hide_p
http://www.way2tutorial.com/jquery/try/run_it.php?filename=hide_this

21

 {

 $(this).hide();

 });

});

</script>

</head>

<body>

<button>Click Me to Hide THIS button</button>

</body>

</html>

$("#div1").hide()

 The jQuery hide() function, hiding whose id="div1" in the elements.

Code Output

<html>

<head>

 <script type="text/javascript"

src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function()

{

 $("button").click(function()

 {

 $("#div1").hide();

 });

});

</script>

</head>

<body>

<p id="div1">This is a Second Paragraph.</p>

<button>Click Me to Hide Above Paragraph</button>

</body>

</html>

$(".div1").hide()

 The jQuery hide() function, hiding whose class=".div1" in the elements.

Code Output

http://www.way2tutorial.com/jquery/try/run_it.php?filename=hide_id
http://www.way2tutorial.com/jquery/try/run_it.php?filename=hide_class

22

<html>

<head>

 <script type="text/javascript"

src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function()

{

 $("button").click(function()

 {

 $(".div1").hide();

 });

});

</script>

</head>

<body>

<p>This is a First Paragraph.</p>

<p class="div1">This is a Second Paragraph.</p>

<button>Click Me to Hide Above Paragraph</button>

</body>

</html>

2.1.2 jQuery: Selectors

jQuery selectors is most important aspects of the jQuery library. jQuery library

allows you to select elements in your HTML document by wrapping them in $(" ") (also

you have to use single quotes), which is the jQuery wrapper. Selectors are useful and

required at every step while using jQuery. With jQuery selectors you can find elements

based on their id, classes, types, attributes, values of attributes and much more. It's based

on the existing CSS Selectors, and in addition, it has some own custom selectors.

All type of selectors in jQuery, start with the dollar sign and parentheses: $().

jQuery Selector Syntax

Selector Description

TagName / element Selects all element match of given elements.

This Selects current elements.

#ID Selects element whose id is match of given elements.

.CLASS Selects element whose class is match of given elements.

* Selects all elements in the document.

ELEMENT / TAG SELECTOR

 The jQuery element selector selects elements based on their tag names. You can

select all <table> elements on a page like this: $("table").

23

Code Output

<html>

<head>

<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function() {

 $("table *").css("background-color","pink");

});

</script>

</head>

<body>

<table border="0" width="400px">

<tr>

<td>Cell 1</td>

<td>Cell 2</td>

</tr>

<tr>

<td>Cell 3</td>

<td>Cell 4</td>

</tr>

</table>

</body>

</html>

THIS SELECTOR

 The jQuery this selector is used for selecting the current element.

Code Output

<html>

<head>

<script type="text/javascript" src="jquery.js">

</script>

<script type="text/javascript">

$(document).ready(function()

{

 $("button").click(function()

 {

 $(this).hide();

 });

});

</script>

</head>

24

<body>

<button>Click Me to Hide THIS

button</button>

</body>

</html>

ID SELECTOR

 The jQuery #id selector uses the id attribute of an HTML tag to find the specific

element. An id should be unique within a page, so you should use the #id selector when

you want to find a single, unique element.

Code Output

<html>

<head>

<script type="text/javascript"

src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("#name").css("background-color","pink");

});

</script>

</head>

<body>

<table border="0" width="400px">

<tr>

<td id="name">Cell 1</td>

<td>Cell 2</td>

</tr>

<tr>

<td>Cell 3</td>

<td>Cell 4</td>

</tr>

</table>

</body>

</html>

CLASS SELECTOR

 The jQuery class selector finds elements with a specific class. To find elements

with a specific class, write a period character, followed by the name of the class:

$(".test")

Code Output

25

<html>

<head>

<script type="text/javascript"

src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function(){

 $(".name").css("background-color","pink");

});

</script>

</head>

<body>

<table border="0" width="400px">

<tr>

<td class="name">Cell 1</td>

<td>Cell 2</td>

</tr>

<tr>

<td>Cell 3</td>

<td>Cell 4</td>

</tr>

</table>

</body>

</html>

jQuery Custom Selectors

Syntax Description

$(":animated") Selects elements currently being animated.

$(":button") Selects any button elements (inputs or buttons tag).

$(":radio") Selects radio buttons.

$(":checkbox") Selects checkboxes.

$(":header") Selects header elements (h1, h2, h3, etc..).

jQuery Selector References

Following some jQuery Selector References...

Selector Example Description

* $("table *") Select All Elements.

#id $("#name") Selected element with id="name".

.class $(".name") Selected elements with class="name".

Tag $("p") Selected All p elements.

Selector Example Description

:first $("p:first") first <p> element.

http://www.way2tutorial.com/jquery/try/run_it.php?filename=jquery_font_animate_effect
http://www.way2tutorial.com/jquery/try/run_it.php?filename=jquery_select_button
http://www.way2tutorial.com/jquery/try/run_it.php?filename=jquery_select_radio
http://www.way2tutorial.com/jquery/try/run_it.php?filename=jquery_select_checkbox
http://www.way2tutorial.com/jquery/try/run_it.php?filename=jquery_select_header
http://www.way2tutorial.com/jquery/try/run_it.php?filename=selector_all
http://www.way2tutorial.com/jquery/try/run_it.php?filename=selector_id
http://www.way2tutorial.com/jquery/try/run_it.php?filename=selector_id
http://www.way2tutorial.com/jquery/try/run_it.php?filename=selector_p
http://www.way2tutorial.com/jquery/try/run_it.php?filename=jquery_select_first

26

:last $("p:last") last <p> element.

:even $("p:even") Perform all even <tr> elements.

:odd $("p:odd") Perform all odd <tr> elements.

Selector Example Description

:enabled $(":enabled") All enabled elements.

:disabled $(":disabled") All disabled elements.

:selected $(":selected") All selected elements.

:checked $(":checked") All checked elements.

Selector Example Description

:input $(":input") selected All input elements.

:text $(":text") selected All input elements with type="text".

:button $(":button") selected All input elements with type="button".

:password $(":password") selected All input elements with

type="password".

:radio $(":radio") selected All input elements with type="radio".

:checkbox $(":checkbox") selected All input elements with

type="checkbox".

:image $(":image") selected All input elements with type="image".

:file $(":file") selected All input elements with type="file".

:submit $(":submit") selected All input elements with type="submit".

:reset $(":reset") selected All input elements with type="reset".

Selector Example Description

:header $(":header") Selected All header elements h1...h6.

:animated $(":animated") Selected All animated elements.

:hidden $("p:hidden") Selected All hidden p elements.

:visible $("tr:visible") Selected All visible table rows.

:empty $(":empty") Selected All elements with no child of the

elements.

:contains(text) $(":contains('Viral

Polishwala')")

Select All elements which contains is text.

Selector Example Description

[attribute] $("[href]") Select All elements with a href attribute.

[attribute$=value] $("a:[href$=.org]") Selected elements with a href attribute value

ending with ".org".

[attribute=value] $("a:[href=#]") Selected elements with a href attribute value

equal to "#".

[attribute!=value] $("a:[href!=#]") Selected elements with a href attribute value not

equal to "#".

2.1.3 jQuery Events

 JavaScript has its own ability to create interaction with Users. Events is a perform

action in Dynamic Web Page.

http://www.way2tutorial.com/jquery/try/run_it.php?filename=jquery_select_last
http://www.way2tutorial.com/jquery/try/run_it.php?filename=jquery_select_even
http://www.way2tutorial.com/jquery/try/run_it.php?filename=jquery_select_odd
http://www.way2tutorial.com/jquery/try/run_it.php?filename=jquery_select_enabled
http://www.way2tutorial.com/jquery/try/run_it.php?filename=jquery_select_disabled
http://www.way2tutorial.com/jquery/try/run_it.php?filename=jquery_select_selected
http://www.way2tutorial.com/jquery/try/run_it.php?filename=jquery_select_checked
http://www.way2tutorial.com/jquery/try/run_it.php?filename=jquery_select_input
http://www.way2tutorial.com/jquery/try/run_it.php?filename=jquery_select_text
http://www.way2tutorial.com/jquery/try/run_it.php?filename=jquery_select_button
http://www.way2tutorial.com/jquery/try/run_it.php?filename=jquery_select_password
http://www.way2tutorial.com/jquery/try/run_it.php?filename=jquery_select_radio
http://www.way2tutorial.com/jquery/try/run_it.php?filename=jquery_select_checkbox
http://www.way2tutorial.com/jquery/try/run_it.php?filename=jquery_select_image
http://www.way2tutorial.com/jquery/try/run_it.php?filename=jquery_select_file
http://www.way2tutorial.com/jquery/try/run_it.php?filename=jquery_select_submit
http://www.way2tutorial.com/jquery/try/run_it.php?filename=jquery_select_reset
http://www.way2tutorial.com/jquery/try/run_it.php?filename=jquery_select_header
http://www.way2tutorial.com/jquery/try/run_it.php?filename=jquery_select_visible
http://www.way2tutorial.com/jquery/try/run_it.php?filename=jquery_select_empty
http://www.way2tutorial.com/jquery/try/run_it.php?filename=jquery_select_contains
http://www.way2tutorial.com/jquery/try/run_it.php?filename=jquery_select_contains
http://www.way2tutorial.com/jquery/try/run_it.php?filename=jquery_select_attribute
http://www.way2tutorial.com/jquery/try/run_it.php?filename=jquery_select_attribute_value_end
http://www.way2tutorial.com/jquery/try/run_it.php?filename=jquery_select_attribute_equal_value
http://www.way2tutorial.com/jquery/try/run_it.php?filename=jquery_select_attribute_notequal_value

27

Following are the examples events −

 A mouse click

 A web page loading

 Taking mouse over an element

 Submitting an HTML form

 A keystroke on your keyboard

EVENT TYPES

The term "fires/fired" is often used with events. Example: "The keypress event is

fired, the moment you press a key".

Here are some common DOM events:

S.N. Event Type & Description

1 Blur: Occurs when the element loses focus.

2 Change: Occurs when the element changes.

3 Click: Occurs when a mouse click.

4 Dblclick: Occurs when a mouse double-click.

5 Error: Occurs when there is an error in loading or unloading etc.

6 Focus: Occurs when the element gets focus.

7 Keydown: Occurs when key is pressed.

8 Keypress: Occurs when key is pressed and released.

9 Keyup: Occurs when key is released.

10 Load: Occurs when document is loaded.

11 Mousedown: Occurs when mouse button is pressed.

12 Mouseenter: Occurs when mouse enters in an element region.

13 Mouseleave: Occurs when mouse leaves an element region.

28

14 Mousemove: Occurs when mouse pointer moves.

15 Mouseout: Occurs when mouse pointer moves out of an element.

16 Mouseover: Occurs when mouse pointer moves over an element.

17 Mouseup: Occurs when mouse button is released.

18 Resize: Occurs when window is resized.

19 Scroll: Occurs when window is scrolled.

20 Select: Occurs when a text is selected.

21 Submit: Occurs when form is submitted.

22 Unload: Occurs when documents is unloaded.

THE EVENT OBJECT

When these events are triggered you can then use a custom function to do pretty

much whatever you want with the event. These custom functions call Event Handlers.

The callback function takes a single parameter; when the handler is called the

JavaScript event object will be passed through it.

The event object is often unnecessary and the parameter is omitted, as sufficient

context is usually available when the handler is bound to know exactly what needs to be

done when the handler is triggered, however there are certain attributes which you

would need to be accessed.

THE EVENT ATTRIBUTES

The following event properties/attributes are available and safe to access in a

platform independent manner −

Property Description

altKey

Set to true if the Alt key was pressed when the event was triggered, false if not. The Alt key

is labeled Option on most Mac keyboards.

ctrlKey Set to true if the Ctrl key was pressed when the event was triggered, false if not.

Data The value, if any, passed as the second parameter to the bind command when the handler

was established.

keyCode For keyup and keydown events, this returns the key that was pressed.

metaKey Set to true if the Meta key was pressed when the event was triggered, false if not. The Meta

key is the Ctrl key on PCs and the Command key on Macs.

29

pageX

For mouse events, specifies the horizontal coordinate of the event relative from the page

origin.

pageY For mouse events, specifies the vertical coordinate of the event relative from the page

origin.

relatedTarget

For some mouse events, identifies the element that the cursor left or entered when the

event was triggered.

Screen

For mouse events, specifies the horizontal coordinate of the event relative from the screen

origin.

Screen

For mouse events, specifies the vertical coordinate of the event relative from the screen

origin.

shiftKey Set to true if the Shift key was pressed when the event was triggered, false if not.

Target Identifies the element for which the event was triggered.

Timestamp The timestamp inmillisecondsinmilliseconds when the event was created.

Type For all events, specifies the type of event that was

triggered forexample,clickforexample,click.

Which

For keyboard events, specifies the numeric code for the key that caused the event, and for

mouse events, specifies which button was pressed 1for left, 2 for middle, 3 for right

THE EVENT METHODS

bind()

Use Event occur when One ore more event handlers attach the selected match elements.

Syntax $(selector).bind(event,[data],function)

Event event is Required parameter. event define the one or more events attach to the

elements.

Data data is Optional parameter. data define the addition data pass to the function.

Function Function is Optional parameter. Function define the ready to run when event occur.

Example <html>

<head>

<script src="jquery.js" type="text/javascript"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("button").bind("click",function(){

 $("div").fadeTo("slow",0.20);

 });

});

</script>

</head>

 <body>

<button>Click to Show Bind Event</button>

<div style="background:pink;width:100%;height:20%;">

</div>

</body>

http://way2tutorial.com/jquery/reference/jquery_bind_event.php

30

</html>

blur()

Use Event occur when element lost focus.

Syntax $(selector).blur(function) (Bind a Function to blur event)

$(selector).blur() (Trigger the blur event)

function Function is Optional parameter. Function define the ready to run when event occur.

Example <html>

<head>

<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("input").focus(function(){

 $("input").css("background-color","#FFFF99");

 });

 $("input").blur(function(){

 $("input").css("background-color","pink");

 });

});

</script>

</head>

<body>

<form action="">

Name:

<input type="text" name="name" />

</form>

</body>

</html>

change()

Use Event occurs when change the elements.

Syntax $(selector).change(function) (Bind a Function to change event)

$(selector).change() (Trigger the change event)

function Function is Optional parameter. Function define the ready to run when event occur.

Example <html>

<head>

<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("input").change(function(){

 $(this).css("background-color","pink");

 });

});

http://way2tutorial.com/jquery/reference/jquery_bind_event.php
http://way2tutorial.com/jquery/reference/jquery_bind_event.php

31

</script>

</head>

<body>

<form action="">

Name:

<input type="text" name="name" />

<input type="submit" name="submit" />

</form>

</body>

</html>

click()

Use Event Occurs when the mouse click.

Syntax $(selector).click(function) (Bind a Function to click event)

$(selector).click() (Trigger the click event)

function Function is Optional parameter. Function define the ready to run when event occur.

Example <html>

<head>

<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("input").click(function(){

 $(this).css("background-color","pink");

 });

});

</script>

</head>

<body>

<form action="">

Name:

<input type="text" name="name" />

<input type="submit" name="submit" />

</form>

</body>

</html>

dblclick()

Use Event Occurs when mouse perform double click.

Syntax $(selector).dblclick(function) (Bind a Function to dblclick event)

$(selector).dblclick() (Trigger the dblclick event)

Function Function is Optional parameter. Function define the ready to run when event occur.

Example <html>

<head>

http://way2tutorial.com/jquery/reference/jquery_bind_event.php
http://way2tutorial.com/jquery/reference/jquery_bind_event.php

32

<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("input").dblclick(function(){

 $(this).css("background-color","pink");

 });

});

</script>

</head>

<body>

<form action="">

Name:

<input type="text" name="name" />

<input type="submit" name="submit" />

</form>

</body>

</html>

delegate()

Use Event Occurs when add one or more event handlers, specific child element of

matching elements.

Syntax $(selector).delegate(ChildSelector,event,[data],function)

Child

Selector

ChildSelector is Required parameter. ChildElement define add one or more

childelement add to handle event.

event event is Required parameter. event define add one or more event add to handle

event.

data data is Optional parameter. data define the addition data pass to the function.

function Function is Optional parameter. Function define the ready to run when event occur.

Example <html>

<head>

<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("div").delegate("button","click",function(){

 $("form").slideToggle();

 });

});

</script>

</head>

<body>

<div style="background-color:pink">

<button>Click Delegate Event Run</button>

<form action="">

http://way2tutorial.com/jquery/reference/jquery_bind_event.php

33

Name:

<input type="text" name="name" />

<input type="submit" name="submit" />

</form>

</div>

</body>

</html>

die()

Use Event Occurs when remove all event handler along with live() event.

Syntax $(selector).die([event],[function])

event event is Optional parameter. event define add one or more event add to handle event.

function Function is Optional parameter. Function define the ready to run when event occur.

Example <html>

<head>

<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("p").live("click",function(){

 $(this).slideToggle();

 });

 $("button").click(function(){

 $("p").die();

 });

});

</script>

</head>

<body>

<p>This Me to Shoe Live or Die Event Example</p>

<p>This Me and occur slideToogle effect with die or live event</p>

<p>This Me to Shoe Live or Die Event Example</p>

<button>Click to Run Die Event</button>

</body>

</html>

error()

Use Event error Occurs when selected element not loaded successfully.

Syntax $(selector).error(function) (Bind a Function to error event)

$(selector).error() (Trigger the error event)

function Function is Optional parameter. Function define the ready to run when event occur.

Example <html>

<head>

<script type="text/javascript" src="jquery.js"></script>

34

<script type="text/javascript">

$(document).ready(function(){

 $("img").error(function(){

 $("img").replaceWith("Error Loading Image Not Open..!");

 });

});

</script>

</head>

<body>

<p>error event occur, when image is not open</p>

</body>

</html>

e.pageX()

Use Event Occurs when mouse position in Left Side.

Syntax event.pageX

event event is Required parameter. event define specific event binding to the function.

Example <html>

<head>

<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function(){

 $(document).mousemove(function(e){

 $("span").text("X: " + e.pageX + ", Y: " + e.pageY);

 });

});

</script>

</head>

<body>

<p>Mouse Position is: </p>

</body>

</html>

e.pageY()

Use Event Occurs when mouse position in Top Side.

Syntax event.pageY

event event is Required parameter. event define specific event binding to the function.

Example <html>

<head>

<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">

35

$(document).ready(function(){

 $(document).mousemove(function(e){

 $("span").text("X: " + e.pageX + ", Y: " + e.pageY);

 });

});

</script>

</head>

<body>

<p>Mouse Position is: </p>

</body>

</html>

e.timestamp()

Use Event Occurs on content the number of stared milliseconds since Jan 1, 1970 to

current time.

Syntax event.timeStamp

event event is Required parameter. event define specific event binding to the function.

Example <html>

<head>

<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("button").click(function(e){

 $("span").text(e.timeStamp);

 });

});

</script>

</head>

<body>

<p>The click event for the button below occurred

<u>_________________</u> milliseconds after January 1, 1970.</p>

<button>Click to Update MilliSeconds</button>

</body>

</html>

e.which()

Use Event Occurs, when key press on your keyboard and return key number.

Syntax event.which

event event is Required parameter. event define specific event binding to the function.

Example <html>

<head>

<script type="text/javascript" src="jquery.js"></script>

36

<script type="text/javascript">

$(document).ready(function(){

 $("input").keydown(function(e){

 $("span").text("Pressed Key: " + e.which);

 });

});

</script>

</head>

<body>

<p>press key in textbox to show which number of key is press in your keyboard</p>

<input type="text" name="inputtext">

</body>

</html>

focus()

Use Event Occurs when the element gets focus.

Syntax $(selector).focus(function) (Bind a Function to focus event)

$(selector).focus() (Trigger the focus event)

function Function is Optional parameter. Function define the ready to run when event occur.

Example <html>

<head>

<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("input").focus(function(){

 $("input").css("background-color","#FFFF99");

 });

 $("input").blur(function(){

 $("input").css("background-color","pink");

 });

 $("#btn1").click(function(){

 $("input").focus();

 });

 $("#btn2").click(function(){

 $("input").blur();

 });

});

</script>

</head>

<body>

<button id="btn1">Click Trigger Focus Event</button>

37

<button id="btn2">Click Trigger Blur Event</button>

<form action="">

Name:

<input type="text" name="name" />

</form>

</body>

</html>

focusin()

Use Event Occurs when the element gets focus.

Syntax $(selector).focusin(function())

function Function is Optional parameter. Function define the ready to run when event occur.

Example <html>

<head>

<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("div").focusin(function(){

 $(this).css("background-color","pink");

 });

 $("div").focusout(function(){

 $(this).css("background-color","#CCCCCC");

 });

});

</script>

</head>

<body>

<p>Click textbox to occur focusin or focusout event</p>

<div style="padding:5px;">

<form action="">

Name:

<input type="text" name="name" />

</form>

</div>

</body>

</html>

focusout()

Use Event Occurs when the element focus out.

Syntax $(selector).focusout(function())

function Function is Optional parameter. Function define the ready to run when event occur.

Example <html>

<head>

38

<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("div").focusin(function(){

 $(this).css("background-color","pink");

 });

 $("div").focusout(function(){

 $(this).css("background-color","#CCCCCC");

 });

});

</script>

</head>

<body>

<p>Click textbox to occur focusin or focusout event</p>

<div style="padding:5px;">

<form action="">

Name:

<input type="text" name="name" />

</form>

</div>

</body>

</html>

hover()

Use Event Occurs when the hover on the selected element.

Syntax $(selector).hover(FocusIn,FocusOut)

focusIn FocusIn is Required parameter. FocusIn define mouse in the selected element.

focusOut FocusOut is Required parameter. FocusOut define mouse out the selected element.

Example <html>

<head>

<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("div").hover(function(){

 $("div").css("background-color","pink");

 },function(){

 $("div").css("background-color","#CCCCCC");

 });

});

</script>

</head>

<body>

<p>Click textbox to occur focusin or focusout event</p>

39

<div style="padding:5px;">

<form action="">

Name:

<input type="text" name="name" />

</form>

</div>

</body>

</html>

keydown()

Use Event Occurs when key is pressed.

Syntax $(selector).keydown(function) (Bind a Function to keydown event)

$(selector).keydown() (Trigger the keydown event)

function Function is Optional parameter. Function define the ready to run when event occur.

Example <html>

<head>

<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("input").keydown(function(){

 $("input").css("background-color","#FFFF99");

 });

 $("input").keyup(function(){

 $("input").css("background-color","pink");

 });

 $("#btn1").click(function(){

 $("input").keydown();

 });

 $("#btn2").click(function(){

 $("input").keyup();

 });

});

</script>

</head>

<body>

<button id="btn1">Function keyDown Event Run</button>

<button id="btn2">Function keyUp Event Run</button>

<form action="">

Name:

<input type="text" name="name" />

</form>

</body>

</html>

40

keypress()

Use Event Occurs when key is pressed count the pressed key.

Syntax $(selector).keypress(function) (Bind a Function to keypress event)

$(selector).keypress() (Trigger the keypress event)

function Function is Optional parameter. Function define the ready to run when event occur.

Example <html>

<head>

<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">

i=0;

$(document).ready(function(){

 $("input").keypress(function(){

 $("span").text(i=i+1);

 });

 $("button").click(function(){

 $("input").keypress();

 });

});

</script>

</head>

<body>

<button>Function keypress Event Run</button>

<form action="">

Name:

<input type="text" name="name" />

</form>

<p>No of Keypressed: </p>

</body>

</html>

keyup()

Use Occurs when key is released.

Syntax $(selector).keyup(function) (Bind a Function to keyup event)

$(selector).keyup() (Trigger the keyup event)

function Function is Optional parameter. Function define the ready to run when event occur.

Example <html>

<head>

<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("input").keydown(function(){

 $("input").css("background-color","#FFFF99");

41

 });

 $("input").keyup(function(){

 $("input").css("background-color","pink");

 });

 $("#btn1").click(function(){

 $("input").keydown();

 });

 $("#btn2").click(function(){

 $("input").keyup();

 });

});

</script>

</head>

<body>

<button id="btn1">Function keyDown Event Run</button>

<button id="btn2">Function keyUp Event Run</button>

<form action="">

Name:

<input type="text" name="name" />

</form>

</body>

</html>

live()

Use Event Occurs when live all event handler.

Syntax $(selector).live([event],[function])

event event is Optional parameter. event define add one or more event add to handle event.

function Function is Optional parameter. Function define the ready to run when event occur.

Example <html>

<head>

<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("p").live("click",function(){

 $(this).slideToggle();

 });

 $("button").click(function(){

 $("p").die();

 });

});

</script>

</head>

<body>

42

<p>This Me to Shoe Live or Die Event Example</p>

<p>This Me and occur slideToogle effect with die or live event</p>

<p>This Me to Shoe Live or Die Event Example</p>

<button>Click to Run Die Event</button>

</body>

</html>

load()

Use Event occurs when document is load.

Syntax $(selector).load(function)

function Function is Required parameter. Function define the ready to run when event occur.

Example <html>

<head>

<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("img").load(function(){

 $("div").text("Current Load Event is Run");

 });

});

</script>

</head>

<body>

<div>Image is Loading</div>

</body>

</html>

mousedown()

Use Event Occurs when mouse button is pressed.

Syntax $(selector).mousedown(function) (Bind Function to mousedown)

$(selector).mousedown() (Trigger the mousedown event)

function Function is Optional parameter. Function define the ready to run when event occur.

Example <html>

<head>

<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("input").mousedown(function(){

 $("input").css("background-color","#FFFF99");

 });

 $("input").mouseup(function(){

 $("input").css("background-color","pink");

43

 });

 $("#btn1").click(function(){

 $("input").mousedown();

 });

 $("#btn2").click(function(){

 $("input").mouseup();

 });

});

</script>

</head>

<body>

<button id="btn1">Function MouseDown Event Run</button>

<button id="btn2">Function MouseUp Event Run</button>

<form action="">

Name:

<input type="text" name="name" />

</form>

</body>

</html>

mouseenter()

Use Event Occurs when mouse enters in an element area.

Syntax $(selector).mouseenter(function) (Bind Function to mouseenter)

$(selector).mouseenter() (Trigger the mouseenter event)

function Function is Optional parameter. Function define the ready to run when event occur.

Example <html>

<head>

<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("input").mouseenter(function(){

 $("input").css("background-color","#FFFF99");

 });

 $("input").mouseleave(function(){

 $("input").css("background-color","pink");

 });

 $("#btn1").click(function(){

 $("input").mouseenter();

 });

 $("#btn2").click(function(){

 $("input").mouseleave();

 });

});

44

</script>

</head>

<body>

<button id="btn1">Function MouseEnter Event Run</button>

<button id="btn2">Function MouseLeave Event Run</button>

<form action="">

Name:

<input type="text" name="name" />

</form>

</body>

</html>

mouseleave()

Use Event Occurs when mouse leaves an element area.

Syntax $(selector).mouseleave(function) (Bind Function to mouseleave)

$(selector).mouseleave() (Trigger the mouseleave event)

function Function is Optional parameter. Function define the ready to run when event occur.

Example <html>

<head>

<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("input").mouseenter(function(){

 $("input").css("background-color","#FFFF99");

 });

 $("input").mouseleave(function(){

 $("input").css("background-color","pink");

 });

 $("#btn1").click(function(){

 $("input").mouseenter();

 });

 $("#btn2").click(function(){

 $("input").mouseleave();

 });

});

</script>

</head>

<body>

<button id="btn1">Function MouseEnter Event Run</button>

<button id="btn2">Function MouseLeave Event Run</button>

<form action="">

Name:

<input type="text" name="name" />

45

</form>

</body>

</html>

mousemove()

Use Event Occurs when mouse pointer moves.

Syntax $(selector).mousemove(function) (Bind Function to mousemove)

function Function is Optional parameter. Function define the ready to run when event occur.

Example <html>

<head>

<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function(){

 $(document).mousemove(function(e){

 $("span").text("X: " + e.pageX + ", Y: " + e.pageY);

 });

});

</script>

</head>

<body>

<p>Mouse Position is: </p>

</body>

</html>

mouseout()

Use Event Occurs when mouse pointer out an element.

Syntax $(selector).mouseout(function) (Bind Function to mouseout)

$(selector).mouseout() (Trigger the mouseout event)

function Function is Optional parameter. Function define the ready to run when event occur.

Example <html>

<head>

<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("input").mouseover(function(){

 $("input").css("background-color","#FFFF99");

 });

 $("input").mouseout(function(){

 $("input").css("background-color","pink");

 });

 $("#btn1").click(function(){

 $("input").mouseover();

46

 });

 $("#btn2").click(function(){

 $("input").mouseout();

 });

});

</script>

</head>

<body>

<button id="btn1">Function Mouseover Event Run</button>

<button id="btn2">Function Mouseout Event Run</button>

<form action="">

Name:

<input type="text" name="name" />

</form>

</body>

</html>

mouseover()

Use Event Occurs when mouse pointer moves over an element.

Syntax $(selector).mouseover(function) (Bind Function to mouseover)

$(selector).mouseover() (Trigger the mouseover event)

function Function is Optional parameter. Function define the ready to run when event occur.

Example <html>

<head>

<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("input").mouseover(function(){

 $("input").css("background-color","#FFFF99");

 });

 $("input").mouseout(function(){

 $("input").css("background-color","pink");

 });

 $("#btn1").click(function(){

 $("input").mouseover();

 });

 $("#btn2").click(function(){

 $("input").mouseout();

 });

});

</script>

</head>

<body>

47

<button id="btn1">Function Mouseover Event Run</button>

<button id="btn2">Function Mouseout Event Run</button>

<form action="">

Name:

<input type="text" name="name" />

</form>

</body>

</html>

mouseup()

Use Event Occurs when mouse button is released.

Syntax $(selector).mouseup(function) (Bind Function to mouseup)

$(selector).mouseup() (Trigger the mouseup event)

function Function is Optional parameter. Function define the ready to run when event occur.

Example <html>

<head>

<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("input").mousedown(function(){

 $("input").css("background-color","#FFFF99");

 });

 $("input").mouseup(function(){

 $("input").css("background-color","pink");

 });

 $("#btn1").click(function(){

 $("input").mousedown();

 });

 $("#btn2").click(function(){

 $("input").mouseup();

 });

});

</script>

</head>

<body>

<button id="btn1">Function MouseDown Event Run</button>

<button id="btn2">Function MouseUp Event Run</button>

<form action="">

Name:

<input type="text" name="name" />

</form>

</body>

</html>

48

ready()

Use Event Occurs when function is ready to document.

Syntax $(document).ready(function) (Bind Function to ready event)

Function Function is Optional parameter. Function define the ready to run when event occur.

Example <html>

<head>

<script src="jquery.js" type="text/javascript"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("p").hide();

 $("#btn1").click(function () {

 $("p").toggle("slow");

 });

});

</script>

</head>

<body>

<button id="btn1">Click To Show Paragraph</button>

 <p style="background-color:#99FFFF;font-size:16px;font-family:Verdana;">This

Effect is Toggle Effect with ready event work.</p>

</body>

</html>

select()

Use Event Occurs when a text is selected.

Syntax $(selector).select(function) (Bind Function to select event)

$(selector).select() (Trigger the select event)

function Function is Optional parameter. Function define the ready to run when event occur.

Example <html>

<head>

<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("input").select(function(){

 $("span").text("Text Selected");

 });

 $("button").click(function(){

 $("input").select();

 });

});

</script>

49

</head>

<body>

<input type="text" value="Click to Select" />

<button>Select All Textbox text with Select event.</button>

</body>

</html>

submit()

Use Event Occurs when form is submitted.

Syntax $(selector).submit(function) (Bind Function to submit event)

$(selector).select() (Trigger the submit event)

function Function is Optional parameter. Function define the ready to run when event occur.

Example <html>

<head>

<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("form").submit(function(e){

 alert("Successfully Submitted");

 });

 $("button").click(function(){

 $("form").submit();

 });

});

</script>

</head>

<body>

<form action="#" method="get">

Name:

<input type="text" name="name" />

Password:

<input type="password" name="password"/>

<input type="submit" name="submit"/>

</form>

</body>

</html>

unload()

Use Event Occurs when documents is unloaded.

Syntax $(selector).unload(function)

50

function Function is Required parameter. Function define the ready to run when event occur.

Example <html>

<head>

<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function(){

 $(window).unload(function(){

 alert("Close this window to show Me Unload Event occur..!");

 });

});

</script>

</head>

<body>

<div>Image is Loading</div>

</body>

</html>

2.2 jQuery : Effects

jQuery provides a trivially simple interface for doing various kind of amazing

effects. jQuery methods allow us to quickly apply commonly used effects with a minimum

configuration.

HIDE

Use The hide method simply hides each of the set of matched elements if they are shown.

There is another form of this method which controls the speed of the animation.

Syntax selector.hide();

Parameter NA

Example <html>

<head>

 <script src="jquery.js" type="text/javascript"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("#btn1").hide();

 $("p").hide();

 $("#btn2").click(function () {

 $("p").show("slow");

 $("#btn2").hide();

 $("#btn1").show();

 });

 $("#btn1").click(function () {

 $("p").hide("slow");

 });

51

});

</script>

</head>

<body>

<button id="btn1">Click To Hide Paragraph</button>

<button id="btn2">Click To Show Paragraph</button>

<p style="background-color:#99FFFF;font-size:16px;font-family:Verdana;">This

Paragraph Will Be Hide After Click...</p>

</body>

</html>

SHOW

Use The show() method simply shows each of the set of matched elements if they are hidden.

There is another form of this method which controls the speed of the animation.

Syntax selector.show();

Parameter NA

Example <html>

<head>

 <script src=" jquery.js " type="text/javascript"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("#btn1").hide();

 $("p").hide();

 $("#btn2").click(function () {

 $("p").show("slow");

 $("#btn2").hide();

 $("#btn1").show();

 });

 $("#btn1").click(function () {

 $("p").hide("slow");

 });

});

</script>

</head>

<body>

<button id="btn1">Click To Hide Paragraph</button>

<button id="btn2">Click To Show Paragraph</button>

<p style="background-color:#99FFFF;font-size:16px;font-family:Verdana;">This

Paragraph Will Be Hide After Click...</p>

</body>

</html>

52

FADE

Fadein()

Use The fadeIn() method fades in all matched elements by adjusting their opacity and firing

an optional callback after completion.

Syntax selector.fadeIn(speed, [callback]);

Parameter speed − A string representing one of the three predefined

speeds "slow","def",or"fast""slow","def",or"fast" or the number of milliseconds to run

the animation e.g.1000e.g.1000.

 callback − This is optional parameter representing a function to call once the

animation is complete.

Example <html>

<head>

<script src=" jquery.js " type="text/javascript"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("#btn1").click(function(){

 $("div").fadeOut(5000);

 });

 $("#btn2").click(function(){

 $("div").fadeIn(5000);

 });

});

</script>

</head>

<body>

<div style="background:#FF9933;width:100%;">My Effect is fadeOut Effect</div>

<button id="btn1">Fade Out (5 Second)</button>

<button id="btn2">Fade In (5 Second)</button>

</body>

</html>

Fadeout()

Use The fadeOut() method fades out all matched elements by adjusting their opacity to 0,

then setting display to "none" and firing an optional callback after completion.

Syntax selector.fadeOut(speed, [callback]);

Parameter speed − A string representing one of the three predefined

speeds "slow","def",or"fast""slow","def",or"fast" or the number of milliseconds to run

the animation e.g.1000e.g.1000.

 callback − This is optional parameter representing a function to call once the

animation is complete.

Example <html>

<head>

53

<script src=" jquery.js " type="text/javascript"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("#btn1").click(function(){

 $("div").fadeOut(5000);

 });

 $("#btn2").click(function(){

 $("div").fadeIn(5000);

 });

});

</script>

</head>

<body>

<div style="background:#FF9933;width:100%;">My Effect is fadeOut Effect</div>

<button id="btn1">Fade Out (5 Second)</button>

<button id="btn2">Fade In (5 Second)</button>

</body>

</html>

Fadeto()

Use The fadeto() method fades the opacity of all matched elements to a specified opacity and

firing an optional callback after completion.

Syntax selector.fadeTo(speed, opacity[, callback]);

Parameter speed − A string representing one of the three predefined

speeds "slow","def",or"fast""slow","def",or"fast" or the number of milliseconds to run

the animation e.g.1000e.g.1000.

 opacity − A number between 0 and 1 denoting the target opacity.

 callback − This is optional parameter representing a function to call once the

animation is complete.

Example <html>

<head>

<script src=" jquery.js " type="text/javascript"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("button").click(function(){

 $("div").fadeTo("slow",0.20);

 });

});

</script>

</head>

 <body>

<button>Click to Show FadeTo Effect</button>

<div style="background:#FF9933;width:100%;height:20%;">

</div>

54

</body>

</html>

SLIDE

jQuery slide methods use to change element height is visible or hidden in a

Selected elements. jQuery Slide Method support main three methods..

slidedown()

Use The slideDown() method reveals all matched elements by adjusting their height and firing

an optional callback after completion.

Syntax $(selector).slideDown(speed,[callback]);

Parameter speed: Elements is a represent by three predefined String speed ("slow", "normal",

"fast"). otherwise number represent by milliseconds (Ex. 3000).

 callback: Callback is optional parameter. It is use to represents a function to be

executed whenever effect is completed.

Example <html>

<head>

 <script src="jquery.js" type="text/javascript"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("#click").click(function(){

 $("#slide").slideDown("slow");

 });

});

</script>

<style type="text/css">

#slide, #click

{

font-family:Verdana;

font-size:14px;

background:#CCCCCC;

border:solid 1px #c3c3c3;

text-align:center;

}

#slide

{

display:none;

height:60px;

}

</style>

</head>

 <body>

<div id="slide">

55

<p>This is a jQuery Effect Example you are realy enjoy this to see this effect.
</p>

</div>

<p id="click">Show Slide Down Panel</p>

 </body></html>

slideup()

Use The slideUp() method hides all matched elements by adjusting their height and firing an

optional callback after completion.

Syntax $(selector).slideUp(speed,[callback]);

Parameter speed: Elements is a represent by three predefined String speed ("slow", "normal",

"fast"). otherwise number represent by milliseconds (Ex. 3000).

 callback: Callback is optional parameter. It is use to represents a function to be

executed whenever effect is completed.

Example <html>

<head>

<script src="jquery.js" type="text/javascript"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("#click").click(function(){

 $("#slide").slideUp("slow");

 });

});

</script>

<style type="text/css">

#slide, #click

{

font-family:Verdana;

font-size:14px;

background:#CCCCCC;

border:solid 1px #c3c3c3;

text-align:center;

}

#slide

{

height:60px;

}

</style>

</head>

<body>

<div id="slide">

<p>This is a jQuery Effect Example you are realy enjoy this to see this effect.
</p>

</div>

<p id="click">Show Slide Up Panel</p>

56

</body>

</html>

slidetoggle()

Use The slideToggle() method toggles the visibility of all matched elements by adjusting their

height and firing an optional callback after completion.

Syntax $(selector).slideToggle(speed,[callback]);

Parameter speed: Elements is a represent by three predefined String speed ("slow", "normal",

"fast"). otherwise number represent by milliseconds (Ex. 3000).

 callback: Callback is optional parameter. It is use to represents a function to be

executed whenever effect is completed.

Example <html>

<head>

<script src="jquery.js" type="text/javascript"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("#click").click(function(){

 $("#slide").slideToggle("slow");

 });

});

</script>

<style type="text/css">

#slide, #click

{

font-family:Verdana;

font-size:14px;

background:#CCCCCC;

border:solid 1px #c3c3c3;

text-align:center;

}

#slide

{

height:60px;

display:none;

}

</style>

</head>

<body>

<div id="slide">

<p>This is a jQuery Effect Example you are realy enjoy this to see this effect.
</p>

</div>

<p id="click">Show Slide Toogle Panel</p>

</body>

</html>

57

ANIMATE

Use The animate() method performs a custom animation of a set of CSS properties.

Syntax selector.animate(params, [duration, easing, callback]);

Parameter params − A map of CSS properties that the animation will move toward.

 duration − This is optional parameter representing how long the animation will run.

 easing − This is optional parameter representing which easing function to use for the

transition.

 callback − This is optional parameter representing a function to call once the

animation is complete.

Example <html>

<head>

<script src="jquery.js" type="text/javascript"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("button").click(function(){

 $("div").animate({fontSize:"60px"},"slow");

 });

});

</script>

</head>

 <body style="overflow:auto;">

<button>Start Animation</button>

<div style="background:#FF9933;height:75px;position:relative;width:100%;">My

Animate Effect</div>

</body></html>

STOP

Use jQuery stop() effect method stop the running animation of selected elements.

Syntax $(selector).stop([stopAll])

Parameter stopall − stopAll is Optional parameter. A Boolean value specifying stop the queued

animate. Default value is false.

Example <html>

<head>

<script type="text/javascript" src="jquery-1.8.0.min.js"></script>

<script type="text/javascript">

$(document).ready(function()

 {

 $("#btn1").click(function(){

 $("#divanimate").animate({height:"300px"},8000);

 });

 $("#btn2").click(function(){

 $("#divanimate").stop();

58

 });

});

</script>

</head>

<body>

<button id="btn1">Animate Start</button>

<button id="btn2">Stop Efeect</button>

<div id="divanimate" style="background: pink;margin:10px;height:100px;width:100px;"

></div>

</body>

</html>

CALLBACK AND FUNCTIONS

Use A callback function is executed after the current effect is 100% finished. JavaScript

statements are executed line by line. However, with effects, the next line of code can be

run even though the effect is not finished. This can create errors. To prevent this, you can

create a callback function. A callback function is executed after the current effect is

finished.

Syntax $(selector).hide(speed,callback);

Parameter speed: Elements is a represent by three predefined String speed ("slow", "normal",

"fast"). otherwise number represent by milliseconds (Ex. 3000).

 callback: Callback is optional parameter. It is use to represents a function to be

executed whenever effect is completed.

Example <html>

<head>

<script src=" jquery.js"></script>

<script>

$(document).ready(function(){

 $("button").click(function(){

 $("p").hide("slow", function(){

 alert("The paragraph is now hidden");

 });

 });

});

</script>

</head>

<body>

<button>Hide</button>

<p>This is a paragraph with little content.</p></body></html>

59

<html>

<head>

<script src=" jquery.js"></script>

<script>

$(document).ready(function(){

 $("button").click(function(){

 $("p").hide(1000);

 alert("The paragraph is now hidden");

 });

});

</script>

</head>

<body>

<button>Hide</button>

<p>This is a paragraph with little content.</p>

</body>

</html>

CHAINING

With jQuery, you can chain together actions/methods. Chaining allows us to run

multiple jQuery methods (on the same element) within a single statement.

Until now we have been writing jQuery statements one at a time (one after the

other).However, there is a technique called chaining, that allows us to run multiple jQuery

commands, one after the other, on the same element(s).

To chain an action, you simply append the action to the previous action. The

following example chains together the css(), slideUp(), and slideDown() methods. The

"p1" element first changes to red, then it slides up, and then it slides down:

<html>

<head>

<script src=" jquery.js"></script>

<script>

$(document).ready(function(){

 $("button").click(function(){

 $("#p1").css("color", "red").slideUp(2000).slideDown(2000);

 });

});

</script>

</head>

<body>

<p id="p1">jQuery is fun!!</p>

<button>Click me</button>

60

</body>

</html>

We could also have added more method calls if needed. When chaining, the line of

code could become quite long. However, jQuery is not very strict on the syntax; you can

format it like you want, including line breaks and indentations.

<html>

<head>

<script src=" jquery.js"></script>

<script>

$(document).ready(function(){

 $("button").click(function(){

 $("#p1").css("color", "red")

 .slideUp(2000)

 .slideDown(2000);

 });

});

</script>

</head>

<body>

<p id="p1">jQuery is fun!!</p>

<button>Click me</button>

</body>

</html>

2.3 jQuery : HTML Manipulation Methods

jQuery HTML Methods are performed for changing and manipulate the HTML

elements or attributes.

JQUERY GET

One very important part of jQuery is the possibility to manipulate the DOM

(Document Object Model). jQuery comes with a bunch of DOM related methods that make

it easy to access and manipulate elements and attributes.

Three simple, but useful, jQuery methods for DOM manipulation are:

 text() - Returns the text content of selected elements

 html() - Returns the content of selected elements (including HTML markup)

 val() - Returns the value of form fields

Example (Get content with HTML and TEXT)

<html>

61

<head>

<script src=" jquery.js"></script>

<script>

$(document).ready(function(){

 $("#btn1").click(function(){

 alert("Text: " + $("#test").text());

 });

 $("#btn2").click(function(){

 alert("HTML: " + $("#test").html());

 });

});

</script>

</head>

<body>

<p id="test">This is some bold text in a paragraph.</p>

<button id="btn1">Show Text</button>

<button id="btn2">Show HTML</button>

</body>

</html>

Example (Manipulating element content)

<html>

<head>

<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("button").click(function(){

 $("p").html("Congratulation, Viral Polishwala");

 });

});

</script>

</head>

<body>

<p>This is a paragraph.</p>

<button>Change content of p elements</button>

</body>

</html>

Example (Getting value of input field with val())

<html>

<head>

<script src=" jquery. js"></script>

<script>

62

$(document).ready(function(){

 $("button").click(function(){

 alert("Value: " + $("#test").val());

 });

});

</script>

</head>

<body>

<p>Name: <input type="text" id="test" value="Mickey Mouse"></p>

<button>Show Value</button>

</body>

</html>

Example (Getting value of attribute with attr())

<html>

<head>

<script src=" jquery.js"></script>

<script>

$(document).ready(function(){

 $("button").click(function(){

 alert($("#vbp").attr("href"));

 });

});

</script>

</head>

<body>

<p>Contact : Viral Polishwala</p>

<button>Show href Value</button>

</body>

</html>

JQUERY SET

We will use the same three methods from the previous page to set content:

 text() - Sets the text content of selected elements

 html() - Sets the content of selected elements (including HTML markup)

 val() - Sets the value of form fields

Example (Use of text(), html() and val() for setting new content)

<html>

<head>

<script src=" jquery.js "></script>

63

<script>

$(document).ready(function(){

 $("#btn1").click(function(){

 $("#test1").text("Hello world!");

 });

 $("#btn2").click(function(){

 $("#test2").html("Hello world!");

 });

 $("#btn3").click(function(){

 $("#test3").val("Dolly Duck");

 });

});

</script>

</head>

<body>

<p id="test1">This is a paragraph.</p>

<p id="test2">This is another paragraph.</p>

<p>Input field: <input type="text" id="test3" value="Mickey Mouse"></p>

<button id="btn1">Set Text</button>

<button id="btn2">Set HTML</button>

<button id="btn3">Set Value</button>

</body>

</html>

All of the three jQuery methods above: text(), html(), and val(), also come with a

callback function. The callback function has two parameters: the index of the current

element in the list of elements selected and the original (old) value. You then return the

string you wish to use as the new value from the function.

Example (Use of text() and html() with a callback function)

<html>

<head>

<script src="jquery.js"></script>

<script>

$(document).ready(function(){

 $("#btn1").click(function(){

 $("#test1").text(function(i, origText){

 return "Old text: " + origText + " New text: Hello world! (index: " + i + ")";

 });

 });

 $("#btn2").click(function(){

 $("#test2").html(function(i, origText){

64

 return "Old html: " + origText + " New html: Hello world! (index: " + i + ")";

 });

 });

});

</script>

</head>

<body>

<p id="test1">This is a bold paragraph.</p>

<p id="test2">This is another bold paragraph.</p>

<button id="btn1">Show Old/New Text</button>

<button id="btn2">Show Old/New HTML</button>

</body>

</html>

The jQuery attr() method is also used to set/change attribute values.

Example (Use of attr() for setting new vale to attribute)

<html>

<head>

<script src=" jquery.js"></script>

<script>

$(document).ready(function(){

 $("button").click(function(){

 $("#vbp").attr("href", "http://www.viralpolishwala.co.in/downloads");

 });

});

</script>

</head>

<body>

<p>Viral B. Polishwala</p>

<button>Change href Value</button>

<p>Mouse over the link (or click on it) to see that the value of the href attribute has changed.</p>

</body>

</html>

JQUERY ADD

With jQuery, it is easy to add new elements/content. We will look at four jQuery

methods that are used to add new content:

 append() - Inserts content at the end of the selected elements

Use jQuery append() method Inserts content into inside end of the selected elements.

Syntax $(selector).append(content)

Parameter Content: content is Required parameter. Insert content end into selected element.

65

Example <html>

<head>

<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("button").click(function(){

 $("p").append(" Online Web Development Tutorial");

 });

});

</script>

</head>

<body>

<p>Viral Polishwala </p>

<button>Insert append end of p element</button>

</body></html>

<html>

<head>

<script src="jquery.js"></script>

<script>

function appendText() {

 var txt1 = "<p>Text.</p>"; // Create text with HTML

 var txt2 = $("<p></p>").text("Text."); // Create text with jQuery

 var txt3 = document.createElement("p");

 txt3.innerHTML = "Text."; // Create text with DOM

 $("body").append(txt1, txt2, txt3); // Append new elements

}

</script>

</head>

<body>

<p>This is a paragraph.</p>

<button onclick="appendText()">Append text</button>

</body>

</html>

 prepend() - Inserts content at the beginning of the selected elements

Use jQuery prepend() method Inserts content into inside beggining of the selected elements.

Syntax $(selector).prepend(content)

Parameter Content: content is Required parameter. Insert content inside first into selected

element.

66

Example <html>

<head>

<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("button").click(function(){

 $("p").prepend(" Online Web Development Tutorial");

 });

});

</script>

</head>

<body>

<p>Viral Polishwala </p>

<button>Insert prepend end of p element</button>

</body>

</html>

 after() - Inserts content after the selected elements

Use jQuery after() method add into end of selected elements.

Syntax $(selector).after(content)

Parameter Content: content is Required parameter. Insert content inside first into selected

element.

Example <html>

<head>

<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("button").click(function(){

 $("p").after(" Online Web Development Tutorial");

 });

});

</script>

</head>

<body>

<p>Viral Polishwala</p>

<button>Insert after the p element</button>

</body>

</html>

 before() - Inserts content before the selected elements

Use jQuery before() method add into start of selected elements.

Syntax $(selector).before(content)

Parameter Content: content is Required parameter. Insert content end into selected element.

67

Example <html>

<head>

<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("button").click(function(){

 $("p").before(" Viral Polishwala");

 });

});

</script>

</head>

<body>

<p>Online Web Development Tutorial</p>

<button>Insert after the p element</button>

</body>

</html>

JQUERY REMOVE

To remove elements and content, there are mainly two jQuery methods:

 remove() - Removes the selected element (and its child elements)

Use jQuery remove() method Removes all selected element content like child elements or

text.

Syntax $(selector).remove()

Parameter NA

Example <html>

<head>

<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("button").click(function(){

 $("div").remove();

 });

});

</script>

</head>

<body>

<div style="background:pink;">This is a paragraph.</div>

<button>Click to emply p elements</button>

</body>

</html>

 empty() - Removes the child elements from the selected element

68

Use jQuery empty() method Removes all child elements from selected elements.

Syntax $(selector).empty()

Parameter NA

Example <html>

<head>

<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("button").click(function(){

 $("div").empty();

 });

});

</script>

</head>

<body>

<div style="background:pink;">This is a paragraph.</div>

<button>Click to emply p elements</button>

</body>

</html>

CSS: Styling and Dimension

jQuery has several methods for CSS manipulation. We will look at the following

methods:

 addClass() - Adds one or more classes to the selected elements

Use jQuery CSS addClass() method add one or more CSS class to selected elements.

Syntax $(selector).addClass(classname)

Parameter ClassName: classname is Required parameter. add one or more css class names.

Example <html>

<head>

<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("button").click(function(){

 $("p").addClass("param");

 });

});

</script>

<style type="text/css">

.param {

 font: 16px Verdana, Arial;

 font-weight:bold;

 color:pink;

69

 }

</style>

</head>

<body>

<p>This is a first paragraph.</p>

<p>This is a second paragraph.</p>

<button>Add class into first P element</button>

</body>

</html>

 removeClass() - Removes one or more classes from the selected elements

Use jQuery removeClass() method removes one or all class from selected elements.

Syntax $(selector).removeClass(classname)

Parameter ClassName: classname is Required parameter. Remove one or more css class names.

Example <html>

<head>

<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("button").click(function(){

 $("p").removeClass("param");

 });

});

</script>

<style type="text/css">

.param {

 font: 16px Verdana, Arial;

 font-weight:bold;

 color:pink;

 }

</style>

</head>

<body>

<p class="param">This is a first paragraph.</p>

<p class="param">This is a second paragraph.</p>

<button>Add class into first P element</button>

</body>

</html>

 toggleClass() - Toggles between adding/removing classes from the selected

elements

Use jQuery toggleClass() method toggles add or remove one or more class from selected

elements.

70

Syntax $(selector).toggleClass(classname)

Parameter ClassName: classname is Required parameter. Replaces one or more css class names.

Example <html>

<head>

<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("button").click(function(){

 $("p").toggleClass("param");

 });

});

</script>

<style type="text/css">

.param {

 font: 16px Verdana, Arial;

 font-weight:bold;

 color:pink;

 }

</style>

</head>

<body>

<p>This is a first paragraph.</p>

<p>This is a second paragraph.</p>

<button>ToogleClass add or remove class into P element</button>

</body></html>

 css() - Sets or returns the style attribute

Use jQuery css() method set one or more style properties value into selected elements.

Syntax $(selector).class(name,value) OR

$(selector).css({property:value,property:value, ...})

Parameter Name: name is Required parameter. It is CSS property.

 Value: value is required parameter. It is respective property value.

Example <html>

<head>

<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("button").click(function(){

 $("p").css("background-color","pink");

 });

});

</script>

71

</head>

<body>

<p>This is CSS Refrence.</p>

<button>Set the css properties value into p elements</button>

</body>

</html>

<html>

<head>

<script type="text/javascript" src="jquery-1.8.0.min.js"></script>

<script type="text/javascript">

$(document).ready(function(){

 $("button").click(function(){

 $("p").css({"background-color":"pink","font-size":"20px"});

 });

});

</script>

</head>

<body>

<p>This is CSS Refrence.</p>

<button>Set multiple css properties value into p elements</button>

</body>

</html>

Traversing

jQuery is a very powerful tool which provides a variety of DOM traversal methods

to help us select elements in a document randomly as well as in sequential method.

jQuery traversing, which means "move through", are used to "find" (or select) HTML

elements based on their relation to other elements. Start with one selection and move

through that selection until you reach the elements you desire.

Most of the DOM Traversal Methods do not modify the jQuery object and they are

used to filter out elements from a document based on given conditions.

<div>

 list item 1and item 2

 list item 3

</div>

The image below illustrates a family tree. With jQuery traversing, you can easily

move up (ancestors), down (descendants) and sideways (siblings) in the family tree,

starting from the selected (current) element. This movement is called traversing - or

moving through - the DOM.

72

Explanantion

 The <div> element is the parent of , and an ancestor of everything inside of it

 The element is the parent of both elements, and a child of <div>

 The left element is the parent of , child of and a descendant of <div>

 The element is a child of the left and a descendant of and <div>

 The two elements are siblings (they share the same parent)

 The right element is the parent of , child of and a descendant of <div>

 The element is a child of the right and a descendant of and <div>

ANCESTOR

An ancestor is a parent, grandparent, great-grandparent, and so on. With jQuery

you can traverse up the DOM tree to find ancestors of an element.

Three useful jQuery methods for traversing up the DOM tree are: parent(),

parents(), parentsUntil().

parent()

Use The parent([selector]) method gets the direct parent of an element. If called on a set of

elements, parent returns a set of their unique direct parent elements.

Syntax selector.parent([selector])

Parameter selector − This is optional selector to filter the parent with.

Example <html>

<head>

<style>

.ancestors * {

 display: block;

 border: 2px solid lightgrey;

 color: lightgrey;

 padding: 5px;

 margin: 15px;

73

}

</style>

<script src="jquery.js"></script>

<script>

$(document).ready(function(){

 $("span").parent().css({"color": "red", "border": "2px solid red"});

});

</script>

</head>

<body>

<div class="ancestors">

 <div style="width:500px;">div (great-grandparent)

 ul (grandparent)

 li (direct parent)

 span

 </div>

 <div style="width:500px;">div (grandparent)

 <p>p (direct parent)

 span

 </p>

 </div>

</div>

</body>

</html>

<html>

 <head>

 <title>The jQuery Example</title>

 <script type = "text/javascript"

 src = " jquery.js "></script>

 <script type = "text/javascript" language = "javascript">

 $(document).ready(function(){

 $("p").parent().addClass('hilight');

 });

 </script>

 <style>

 .hilight { background:yellow; }

 </style>

 </head>

 <body>

 <scan>Top Element</scan>

 <div>

74

 <div>sibling<div>child</div></div>

 <p>sibling</p>

 <scan>sibling</scan>

 </div>

 </body>

</html>

parents()

Use The parents([selector]) method gets a set of elements containing the unique ancestors

of the matched set of elements except for the root element.

Syntax selector.parents([selector])

Parameter selector − This is optional selector to filter the ancestors with.

Example <html>

<head>

<style>

.ancestors * {

 display: block;

 border: 2px solid lightgrey;

 color: lightgrey;

 padding: 5px;

 margin: 15px;

}

</style>

<script src="jquery.js"></script>

<script>

$(document).ready(function(){

 $("span").parents().css({"color": "red", "border": "2px solid red"});

});

</script>

</head>

<body class="ancestors">body (great-great-grandparent)

 <div style="width:500px;">div (great-grandparent)

 ul (grandparent)

 li (direct parent)

 span

 </div>

</body>

<!-- The outer red border, before the body element, is the html element (also an ancestor)

-->

</html>

75

<html>

 <head>

 <title>The jQuery Example</title>

 <script type = "text/javascript"

 src = " jquery.js "></script>

 <script type = "text/javascript" language = "javascript">

 $(document).ready(function(){

 var parentEls = $("p").parents()

map(function () {

 return this.tagName;

 }).get().join(", ");

 $("b").append("" + parentEls + "");

 });

 </script>

 </head>

 <body>

 <scan>Top Element</scan>

 <div>

 <div class = "top">Top division

 <p class = "first">First Sibling</p>

 <scan>Second sibling</scan>

 <p class = "third">Third sibling</p>

 </div>

 Parents of <p> elements are:

 </div>

 </body>

</html>

parentsUntil()

Use The parentsUntil() method returns all ancestor elements between two given arguments.

Syntax selector.parentsUntil((selector))

Parameter selector – Two selectors values need to be given between which the jQuery may fired

76

Example <html>

<head>

<style>

.ancestors * {

 display: block;

 border: 2px solid lightgrey;

 color: lightgrey;

 padding: 5px;

 margin: 15px;

}

</style>

<script src="jquery.js"></script>

<script>

$(document).ready(function(){

 $("span").parentsUntil("div").css({"color": "red", "border": "2px solid red"});

});

</script>

</head>

<body class="ancestors"> body (great-great-grandparent)

 <div style="width:500px;">div (great-grandparent)

 ul (grandparent)

 li (direct parent)

 span

 </div>

</body>

</html>

DESCENDANTS

A descendant is a child, grandchild, great-grandchild, and so on. With jQuery you

can traverse down the DOM tree to find descendants of an element.

Two useful jQuery methods for traversing down the DOM tree are:children() and

find()

children()

Use The children([selector]) method gets a set of elements containing all of the unique

immediate children of each of the matched set of elements.

Syntax Selector.children([selector])

Parameter selector − This is an optional argument to filter out all the childrens. If not supplied

then all the childrens are selected.

77

Example <html><head><style>

.descendants * {

 display: block;

 border: 2px solid lightgrey;

 color: lightgrey;

 padding: 5px;

 margin: 15px;

}

</style>

<script src="jquery.js"></script>

<script>

$(document).ready(function(){

 $("div").children().css({"color": "red", "border": "2px solid red"});

});

</script></head>

<body>

<div class="descendants" style="width:500px;">div (current element)

 <p>p (child)

 span (grandchild)

 </p>

 <p>p (child)

 span (grandchild)

 </p>

</div>

</body>

</html>

<html>

 <head>

 <title>The jQuery Example</title>

 <script type = "text/javascript"

 src = "jquery.js"></script>

 <script>

 $(document).ready(function(){

 $("div").children(".selected").addClass("blue");

 });

 </script>

 <style>

 .blue { color:blue; }

 </style>

 </head>

 <body>

 <div>

 Hello

78

 <p class = "selected">Hello Again</p>

 <div class = "selected">And Again</div>

 <p class = "biggest">And One Last Time</p>

 </div>

 </body>

</html>

find()

Use The find(selector) method searches for descendant elements that match the specified

selector.

Syntax selector.find(selector)

Parameter selector − The selector can be written using CSS 1-3 selector syntax.

Example <html>

<head>

<style>

.descendants * {

 display: block;

 border: 2px solid lightgrey;

 color: lightgrey;

 padding: 5px;

 margin: 15px;

}

</style>

<script src="jquery.js"></script>

<script>

$(document).ready(function(){

 $("div").find("span").css({"color": "red", "border": "2px solid red"});

});

</script>

</head>

<body>

<div class="descendants" style="width:500px;">div (current element)

 <p>p (child)

 span (grandchild)

 </p>

 <p>p (child)

 span (grandchild)

 </p>

</div>

</body>

</html>

79

<html>

 <head>

 <title>The jQuery Example</title>

 <script type = "text/javascript"

 src = "jquery.js"></script>

 <script type = "text/javascript" language = "javascript">

 $(document).ready(function() {

 $("p").find("span").addClass("selected");

 });

 </script>

 <style>

 .selected { color:red; }

 </style>

 </head>

 <body>

 <div>

 <p>Hello, how are you?</p>

 <p>Me? I'm good.</p>

 </div>

 </body>

</html>

SIBLINGS

Siblings share the same parent. With jQuery you can traverse sideways in the DOM

tree to find siblings of an element.

There are many useful jQuery methods for traversing sideways in the DOM tree:

siblings() , next(), nextAll(), nextUntil(), prev(), prevAll(), prevUntil()

siblings()

Use The siblings([selector]) method gets a set of elements containing all of the unique

siblings of each of the matched set of elements.

Syntax selector.siblings([selector])

Parameter selector − This is optional selector to filter the sibling Elements with.

Example <html>

<head>

<style>

.siblings * {

 display: block;

 border: 2px solid lightgrey;

 color: lightgrey;

 padding: 5px;

80

 margin: 15px;

}

</style>

<script src="jquery.js"></script>

<script>

$(document).ready(function(){

 $("h2").siblings().css({"color": "red", "border": "2px solid red"});

});

</script>

</head>

<body class="siblings">

<div>div (parent)

 <p>p</p>

 span

 <h2>h2</h2>

 <h3>h3</h3>

 <p>p</p>

</div>

</body></html>

 <html> <head>

 <title>The jQuery Example</title>

 <script type = "text/javascript"

 src = " jquery.js "></script>

 <script type = "text/javascript" language = "javascript">

 $(document).ready(function(){

 $("p").siblings('.selected').addClass("hilight");

 });

 </script>

 <style>

.hilight { background:yellow; }

</style>

 </head>

 <body>

 <div>Hello</div>

 <p class = "selected">Hello Again</p>

 <p>And Again</p>

 </body></html>

next()

Use The next([selector]) method gets a set of elements containing the unique next siblings

of each of the given set of elements.

Syntax selector.next([selector])

81

Parameter selector − The optional selector can be written using CSS 1-3 selector syntax. If we

supply a selector expression, the element is unequivocally included as part of the

object. If we do not supply one, the element would be tested for a match before it was

included.

Example <html>

<head>

<style>

.siblings * {

 display: block;

 border: 2px solid lightgrey;

 color: lightgrey;

 padding: 5px;

 margin: 15px;

}

</style>

<script src="jquery.js"></script>

<script>

$(document).ready(function(){

 $("h2").next().css({"color": "red", "border": "2px solid red"});

});

</script>

</head>

<body class="siblings">

<div>div (parent)

 <p>p</p>

 span

 <h2>h2</h2>

 <h3>h3</h3>

 <p>p</p>

</div>

</body>

</html>

 <html>

 <head>

 <title>The jQuery Example</title>

 <script type = "text/javascript"

 src = "jquery.js"></script>

 <script type = "text/javascript" language = "javascript">

 $(document).ready(function(){

 $("p").next(".selected").addClass("hilight");

 });

 </script>

 <style>

82

 .hilight { background:yellow; }

 </style>

 </head>

 <body>

 <p>Hello</p>

 <p class = "selected">Hello Again</p>

 <div>And Again</div>

 </body>

</html>

nextAll()

Use The nextAll([selector]) method finds all sibling elements after the current element.

Syntax selector.nextAll([selector])

Parameter selector − The optional selector can be written using CSS 1-3 selector syntax. If we

supply a selector then result would be filtered out.

Example <html>

<head>

<style>

.siblings * {

 display: block;

 border: 2px solid lightgrey;

 color: lightgrey;

 padding: 5px;

 margin: 15px;

}

</style>

<script src=" jquery.js "></script>

<script>

$(document).ready(function(){

 $("h2").nextAll().css({"color": "red", "border": "2px solid red"});

});

</script>

</head>

<body class="siblings">

<div>div (parent)

 <p>p</p>

 span

 <h2>h2</h2>

 <h3>h3</h3>

 <p>p</p>

</div>

</body>

83

</html>

 <html>

 <head>

 <title>The jQuery Example</title>

 <script type = "text/javascript"

 src = "jquery.js"></script>

 <script type = "text/javascript" language = "javascript">

 $(document).ready(function(){

 $("div:first").nextAll().addClass("hilight");

 });

 </script>

 <style>

 .hilight { background:yellow; }

 </style>

 </head>

 <body>

 <div>first</div>

 <div>sibling<div>child</div></div>

 <div>sibling</div>

 <div>sibling</div>

 </body>

</html>

nextUntill()

Use The nextUntil() method returns all next sibling elements between two given arguments.

Syntax selector.nextUntil([selector])

Parameter selector – name of selector to start with and and work until the second selector.

Example <html>

<head>

<style>

.siblings * {

 display: block;

 border: 2px solid lightgrey;

 color: lightgrey;

 padding: 5px;

 margin: 15px;

}

</style>

<script src="jquery.js"></script>

<script>

$(document).ready(function(){

 $("h2").nextUntil("h6").css({"color": "red", "border": "2px solid red"});

84

});

</script>

</head>

<body class="siblings">

<div>div (parent)

 <p>p</p>

 span

 <h2>h2</h2>

 <h3>h3</h3>

 <h4>h4</h4>

 <h5>h5</h5>

 <h6>h6</h6>

 <p>p</p>

</div>

</body>

</html>

prev()

Use The prev([selector]) method gets the immediately preceding sibling of each element in

the set of matched elements, optionally filtered by a selector.

Syntax selector.prev([selector])

Parameter selector − This is optional selector to filter the previous Elements with.

Example <html>

 <head>

 <title>The jQuery Example</title>

 <script type = "text/javascript" src = "jquery.js"></script>

 <script type = "text/javascript" language = "javascript">

 $(document).ready(function(){

 $("p").prev(".selected").addClass("hilight");

 });

 </script>

 <style>

 .hilight { background:yellow; }

 </style>

 </head>

 <body>

 <div>Hello</div>

 <p class = "selected">Hello Again</p>

 <p>And Again</p>

 </body>

</html>

prevAll()

85

Use The prev([selector]) method gets the immediately preceding sibling of each element in

the set of matched elements, optionally filtered by a selector.

Syntax $(selector).prevAll([filter])

Parameter selector − This is optional selector to filter the previous Elements with.

 Filter - Optional. Specifies a selector expression to narrow down the search for

previous siblings

Example <html>

<head>

<style>

.siblings * {

 display: block;

 border: 2px solid lightgrey;

 color: lightgrey;

 padding: 5px;

 margin: 15px;

}

</style>

<script src="jquery.js"></script>

<script>

$(document).ready(function(){

 $("li.start").prevAll().css({"color": "red", "border": "2px solid red"});

});

</script>

</head>

<body>

<div style="width:500px;" class="siblings">

 ul (parent)

 li (the previous sibling of li with class name "start")

 li (the previous sibling of li with class name "start")

 li (the previous sibling of li with class name "start")

 <li class="start">li (sibling with class name "start")

 li (sibling)

 li (sibling)

</div>

<p>In this example, we return all elements that are previous siblings of the li element with

class name "start".</p>

</body>

</html>

<html>

 <head>

 <title>The jQuery Example</title>

 <script type = "text/javascript" src = " jquery.js"></script>

86

 <script type = "text/javascript" language = "javascript">

 $(document).ready(function(){

 $("div:last").prevAll().addClass("hilight");

 });

 </script>

 <style>

 .hilight { background:yellow; }

 </style>

 </head>

 <body>

 <div class = "hilight">first</div>

 <div class = "hilight">sibling<div>child</div></div>

 <div class = "hilight">sibling</div>

 <div>sibling</div>

 </body>

</html>

prevUntil()

Use The prevUntil() method returns all previous sibling elements between

the selector and stop.

Syntax $(selector).prevUntil(stop,filter)

Parameter selector − This is optional selector to filter the previous Elements with.

 Filter - Optional. Specifies a selector expression to narrow down the search for sibling

elements between the selector and stop

 Stop – Optional. A selector expression, element or jQuery object indicating where to

stop the search for previous matching siblings elements

Example <html>

<head>

<style>

.siblings * {

 display: block;

 border: 2px solid lightgrey;

 color: lightgrey;

 padding: 5px;

 margin: 15px;

}

</style>

<script src="jquery.js"></script>

<script>

$(document).ready(function(){

 $("li.start").prevUntil("li.stop").css({"color": "red", "border": "2px solid red"});

});

</script>

87

</head>

<body>

<div style="width:500px;" class="siblings">

 ul (parent)

 <li class="stop">li (sibling with class name "stop")

 li (the previous sibling of li with class name "start")

 li (the previous sibling of li with class name "start")

 li (the previous sibling of li with class name "start")

 <li class="start">li (sibling with class name "start")

 li (sibling)

 li (sibling)

</div>

<p>In this example, we return all previous sibling elements between the li element with

class name "start" and the li element with class name "stop".</p>

</body>

</html>

FILTERING

The three most basic filtering methods are first(), last() and eq(), which allow you

to select a specific element based on its position in a group of elements. Other filtering

methods, like filter() and not() allow you to select elements that match, or do not match,

a certain criteria.

first()

Use The first() method returns the first element of the selected elements.

Syntax $(selector).first()

Parameter NA

Example <html>

<head>

<script

src="https://ajax.googleapis.com/ajax/libs/jquery/1.12.0/jquery.min.js"></script>

<script>

$(document).ready(function(){

 $("div p").first().css("background-color", "yellow");

});

</script>

</head>

<body>

<h1>Welcome to My Homepage</h1>

<div style="border:1px solid black">

 <p>This is a paragraph in a div.</p>

 <p>This is a paragraph in a div.</p>

88

</div>

<div style="border:1px solid black">

 <p>This is a paragraph in another div.</p>

 <p>This is a paragraph in another div.</p>

</div>

<p>This is also a paragraph.</p>

</body></html>

last()

Use The last() method returns the last element of the selected elements.

Syntax $(selector).last()

Parameter NA

Example <html>

<head>

<script src="jquery.js"></script>

<script>

$(document).ready(function(){

 $("div p").last().css("background-color", "yellow");

});

</script>

</head>

<body>

<h1>Welcome to My Homepage</h1>

<div style="border:1px solid black">

 <p>This is a paragraph in a div.</p>

 <p>This is a paragraph in a div.</p>

</div>

<div style="border:1px solid black">

 <p>This is a paragraph in another div.</p>

 <p>This is a paragraph in another div.</p>

</div>

<p>This is also a paragraph.</p>

</body>

</html>

eq()

Use The eq() method returns an element with a specific index number of the selected elements.

Syntax $(selector).eq(index)

Parameter Index - Required. Specifies the index of the element. Can either be a positive or

negative number.

Example <html>

<head>

<script src="jquery.js"></script>

89

<script>

$(document).ready(function(){

 $("p").eq(1).css("background-color", "yellow");

});

</script>

</head>

<body>

<h1>Welcome to My Homepage</h1>

<p>My name is Donald (index 0).</p>

<p>Donald Duck (index 1).</p>

<p>I live in Duckburg (index 2).</p>

<p>My best friend is Mickey (index 3).</p>

</body>

</html>

not()

Use The not() method returns elements that do not match a certain criteria. This method lets

you specify a criteria. Elements that do not match the criteria are returned from the

selection, and those that match will be removed.This method is often used to remove one

or more elements from a group of selected elements.

Syntax $(selector).not(criteria,function(index))

Parameter criteria − Optional. Specifies a selector expression, a jQuery object or one or more

elements to be removed from a group of selected elements.

 Function(index)- Optional. Specifies a function to run for each element in a

group. If it returns true, the element is removed. Otherwise, the element is kept.

Example <html>

<head>

<script src="jquery.js"></script>

<script>

$(document).ready(function(){

 $("p").not(".intro").css("background-color", "yellow");

});

</script>

</head>

<body>

<h1>Welcome to My Homepage</h1>

<p>My name is Donald.</p>

<p class="intro">I live in Duckburg.</p>

<p class="intro">I love Duckburg.</p>

<p>My best friend is Mickey.</p>

</body>

</html>

90

find()

Use The find() method returns descendant elements of the selected element. A descendant is

a child, grandchild, great-grandchild, and so on.

Syntax $(selector).find(filter)

Parameter Filter - Required. A selector expression, element or jQuery object to filter the search

for descendants.

Example <html>

<head>

<style>

.ancestors * {

 display: block;

 border: 2px solid lightgrey;

 color: lightgrey;

 padding: 5px;

 margin: 15px;

}

</style>

<script src="jquery.js"></script>

<script>

$(document).ready(function(){

 $("ul").find("span").css({"color": "red", "border": "2px solid red"});

});

</script>

</head>

<body class="ancestors">body (great-grandparent)

 <div style="width:500px;">div (grandparent)

 ul (direct parent)

 li (child)

 span (grandchild)

 </div>

</body></html>

filter()

Use The filter() method returns elements that match a certain criteria. This method lets you

specify criteria. Elements that do not match the criteria are removed from the selection,

and those that match will be returned. This method is often used to narrow down the

search for an element in a group of selected elements.

Syntax $(selector).filter(criteria,function(index))

Parameter criteria − Optional. Specifies a selector expression, a jQuery object or one or more

elements to be removed from a group of selected elements.

91

 Function(index)- Optional. Specifies a function to run for each element in a group. If

it returns true, the element is removed. Otherwise, the element is kept.

Example <html>

<head>

<script src="jquery.js"></script>

<script>

$(document).ready(function(){

 $("p").filter(".intro").css("background-color", "yellow");

});

</script>

</head>

<body>

<h1>Welcome to My Homepage</h1>

<p>My name is Donald.</p>

<p class="intro">I live in Duckburg.</p>

<p class="intro">I love Duckburg.</p>

<p>My best friend is Mickey.</p>

</body>

</html>

92

Chapter – 3

JSON : (Java Script Object Notation)

93

 JSON is an acronym for JavaScript Object Notation, is an open standard format,

which is lightweight and text-based, designed explicitly for human-readable data

interchange. It is a language-independent data format. It supports almost every kind of

language, framework, and library.

3.1 Concept and Features of JSON

Concepts

 JSON is a lightweight text-based open standard data-interchange format. It is

human readable. JSON is derived from a subset of JavaScript programming language

(Standard ECMA-262 3rd Edition—December 1999). It is entirely language independent

and can be used with most of the modern programming languages.

 JSON is often used to serialize and transfer data over a network connection, for

example between the web server and a web application. In computer science,

serialization is a process to transforming data structures and objects in a format suitable

to be stored in a file or memory buffer or transmitted over a network connection. Later

on, this data can be retrieved. Because of the very nature of the JSON, it is useful for

storing or representing semi structured data

 JSON is a standard and is specified on RFC4627 on IETF (International Engineering

Task Force). The specification is made by Doglus Crockford on July 2006.

 JSON files are saved with .json extension. Internet media type of JSON is

"application/json".

Features

 JSON is light-weight

 JSON is language independent which works with most of the modern days

programming languages.

 It is easy to read and write

 Text-based, human readable data exchanged format

 It is scalable.

Some other features can be narrated as simplicity, openness, self-describing,

internationalization, extensibility and interoperability.

3.2 Similarities and Differences between JSON and XML

 JSON stands for JavaScript Object Notation, whereas XML stands for Extensive

Markup Language. Nowadays, JSON and XML are widely used as data interchange

formats, and both have been acquired by applications as a technique to store structured

94

data. The purpose of the comparison it's definitely not in the line of which is better, rather

we will try to understand which one is suitable for storing specific kind of data.

Similarities between JSON and XML

 Both JSON and XML are human readable language.

 Both JSON and XML support unicode, thus any human written language can be written

in JSON and XML documents.

 Both JSON and XML can be parsed.

 The data in both JSON and XML can be fetched using XMLHttpRequest.

Differences between JSON and XML

JSON (JavaScript Object Notation) XML (eXtensible Markup Language)

JSON is simple and easier to read and write XML is verbose and less readable

JSON doesn’t use end tag In XML, the end tag is mandatory

JSON supports array thus it is easy to

transfer a big chunk of homogeneous data

items using JSON

XML doesn’t support array

JSON is easier to parse and can be parsed

to ready-to-use JavaScript object
XML is difficult to parse than JSON

JSON is short
XML document is lengthy, verbose and

redundant

JSON is less secure than XML XML is more secured than JSON

JSON file is more readable than XML

because it is short and to the point.

XML file is big and filled with user-

defined tags, thus less-readable

JSON is data-oriented XML is document-oriented

It doesn't provide display capabilities.

It provides the display capability because

it is a markup language.

Example:

["student" :

{

"sname" : "Ashish",

"rno" : "101",

"div" : "I"

},

<student>

<sname>Ashish</sname>

<rno>101</rno>

<div>I</div>

</student>

95

{

"sname" : "Binita",

"rno" : "102",

"div" : "I"

}

]

3.3 JSON objects (with strings and numbers)

 JSON objects are formed using the curly braces ‘{’ which surrounds its data. These

are written in a key-value pairing format. It is to be noted that the keys must have to be a

string, and the value in the key-value pair must have to be anyone among the data types

of JSON like: string, number, boolean, array, object, null. Moreover, the key and value are

separated by a colon (:) and where there are multiple key-value pairs, all of these are

separated by a comma (,)

Creating JSON object

 There are 3 ways to create objects in JSON, the type of creation depends on how

we create and initialize them. They are as follows:

 Empty Object

 To create an empty JSON object the syntax is as follows:

Syntax:

var objname={};

Example:

var empobj={};

 New Object

 Another way to create and object in JSON is as follows where you can use new

operator along with object method.

Syntax:

var objname=new Object();

Example:

var jsonobj=new Object();

 Object with attribute

 Another way of creating objects is by assigning multiple attributes where the key

will be the string, and the value can be either string or a numeric value. Let us take an

example where a JSON file will store students’ data and their marks.

96

Example:

var students = {“name” : “Vishal”, “IS” : 35, “IOT” : 42 }

Accessing JSON object value

 To access the value of JSON object one can use the square bracket notations as

follows for the above mentioned student object of JSON:

ismarks=students[“IS”];

Nesting JSON object

 To nest a JSON object within another one, we can use it like follows:

var students = {

“name” : “Vishal”,

“course” : “BCA”,

“marks”: {

 “IS” : 45;

 “IOT” : 41;

 “JAVA” : 35;

 }

}

Deleting JSON object

 It is also possible to delete any properties of an object created within JSON using

the delete keyword. The dot (.) or period operator needs to be used to access the nested

object elements. The more you access the nested elements, the more you have to add dots.

Let suppose you want to delete the “JAVA” from that previous JSON example so that you

can use the delete keyword followed by this

delete students.marks.JAVA;

Creating JSON object (with string)

 We can use the string as value for the object attribute. It is a double-quoted set of

character(s) (Unicode) having backslash escaping. It denotes a single character string

value, having a string length of one when you say character. Example of the same are

already given in the example above with name, course attributes of JSON object students.

Creating JSON object (with numbers)

 We can use the number as value for the object attribute. It provides floating point

double precision data format and does not allow octal or hexadecimal number formats.

Moreover, it does not assign NaN or infinity to its variables. It can be in 3 categories:

Integer, Fraction, Exponent. Example of the same is given in the above JSON object named

students with attributes IS, IOT, JAVA.

97

3.4 JSON Arrays and their examples

 An array is a collection of multiple values under one name and is enclosed within

square braces as in other programming languages and separated by commas. JSON array

represents ordered list of values. JSON array can store multiple values. It can store string,

number, boolean or object in JSON array. In JSON array, values must be separated by

comma. The [] (square bracket) represents JSON array. An array of JSON can be array of

strings, numbers, boolean, objects etc. Following are certain examples of JSON arrays:

3.4.1 Arrays of String

 An array of string values can be represented as follows for the array days in JSON:

“days”: [“Sunday”, ”Monday”, ”Tuesday”, ”Wednesday”, ”Thursday”, ”Friday”,

”Saturday”] ;

3.4.2 Arrays of Numbers

 An array of number values can be represented as follows for the array in JSON:

“maxtempweek”: [23, 24, 22, 22, 23, 24, 21];

3.4.3 Arrays of Boolean

 An array of boolean values can be represented as follows for the array in JSON:

“rainydayweek”: [true, false, false, true, true, false, true];

3.4.4 Arrays of Objects

 JSON array can hold the JSON object as an array elements. Check it in the
example below:

{"students":[

 {"name":"Manoj", "email":"mjpatel@gmail.com", "rno":57},

 {"name":"Mansi", "email":"mansi124@gmail.com", "rno":45},

 {"name":"Rivan", "email":"rivannaik@gmail.com", "age":15}

]}

3.4.5 Multi-dimensional Arrays

 JSON multi-dimensional array works in following manner:

 Creation

An array of array or saving an array within other one is considered as multi-

dimensional JSON array.

98

var webinfo = {

 "name" : "blogger",

 "users_auth" : [

 ["admins", "7", "7", "7"],

 ["editors", "4", "4", "1"],

]

}

 Iteration

To iterate through the multi-dimensional array in JSON simple for loop will work.

Code Output

for (i in webinfo .users_auth)

{

 for (j in webinfo.users_auth[i])

 {

 x = webinfo.users_auth [i][j];

 console.log(x);

 }

}

admins

7

7

7

editors

4

4

1

3.5 JSON Comments

 JSON is a data-only format. Comments in the form //, #, or /* */, which are used

in popular programming languages, are not allowed in JSON. You can add comments to

JSON as custom JSON elements that will hold your comments, but these elements will still

be data. To do this, you need to add an element to your JSON file, such as "_comment,"

which will contain your comment as a value of it. The JSON API endpoint must ignore this

particular JSON comment element. In this JSON comment example, we have included two

comment elements in the JSON data.

{

 "Id": 1007,

 "Customer": "Thomas",

 "Quantity": 5,

 "Price": 100.00,

 "Date":"12-11-21",

 "//first_comment": "Customer Bill.",

 "//second_comment": "generated with 5 main attributes."

}

https://reqbin.com/Article/JSONExample

99

 Douglas Crockford, who popularized the JSON data format, deliberately removed

comments from JSON to prevent misuse of the JSON format and keep it as a data-only

format. He describes the reason he removed the comments from the JSON as follows:

” I removed comments from JSON because I saw people using them to store parsing

directives, which would break compatibility.”

 Therefore, the only option for adding comments to JSON is a workaround to use

custom elements to store comments in a JSON file.

100

Chapter – 4

AJAX (Asynchronous Javascript And XML)

101

 AJAX is not a new technology, in fact, Ajax is not even really a technology at all. It

is getting tremendous industry momentum and several tool kit and frameworks are

emerging. AJAX is just a term to describe the process of exchanging data from a web

server asynchronously through JavaScript, without refreshing the page. But at the same

time, AJAX has browser incompatibility and it is supported by JavaScript, which is hard

to maintain and debug.

4.1 Fundamentals of AJAX Technology

 AJAX is an acronym for Asynchronous JavaScript and XML. It is a group of inter-

related technologies like JavaScript, DOM, XML, HTML/XHTML, CSS, XMLHttpRequest etc.

 Ajax is just a means of loading data from the server and selectively updating parts

of a web page without reloading the whole page. So it is fast.

 Basically, what Ajax does is make use of the browser's built-in XMLHttpRequest

(XHR) object to send and receive information to and from a web server asynchronously,

in the background, without blocking the page or interfering with the user's experience.

 AJAX allows you to send only important information to the server not the entire

page. So only valuable data from the client side is routed to the server side. It makes your

application interactive and faster.

 AJAX is used for creating interactive web applications. It has become so popular

that you hardly find an application that doesn't use Ajax to some extent. The example of

some large-scale Ajax-driven online applications are: Gmail, Google Maps, Google Docs,

YouTube, Facebook, Flickr, and so many other applications.

 Following are certain feature/characteristics of AJAX.

 Ajax uses XHTML for content, CSS for presentation, along with Document Object Model

and JavaScript for dynamic content display.

 Conventional web applications transmit information to and from the sever using

synchronous requests. It means you fill out a form, hit submit, and get directed to

a new page with new information from the server.

 With AJAX, when you hit submit, JavaScript will make a request to the server,

interpret the results, and update the current screen. In the purest sense, the user

would never know that anything was even transmitted to the server.

 XML is commonly used as the format for receiving server data, although any

format, including plain text, can be used.

 AJAX is a web browser technology independent of web server software.

 A user can continue to use the application while the client program requests

information from the server in the background.

102

 Intuitive and natural user interaction. Clicking is not required, mouse movement

is a sufficient event trigger.

 Data-driven as opposed to page-driven.

 AJAX is based on the following open standards −

 Browser-based presentation using HTML and Cascading Style Sheets (CSS).

 Data is stored in XML format and fetched from the server.

 Behind-the-scenes data fetches using XMLHttpRequest objects in the browser.

 JavaScript to make everything happen.

 AJAX cannot work independently. It is used in combination with other

technologies to create interactive webpages. Ajax is based on HTML, CSS, JavaScript,

DOM, and XML.

HTML/CSS

 HTML/CSS is website markup language for defining web page layout, such as fonts

style and colors. CSS allows for a clear separation of the presentation style from the

content and may be changed programmatically by JavaScript.

JavaScript

 JavaScript is a web scripting language. JavaScript special object XMLHttpRequest

that was designed by Microsoft. XMLHttpRequest provides an easy way to retrieve data

from web server without having to do full page refresh. Web page can update just part of

the page without interrupting what the users are doing.

Document Object Model

Document Object Model (DOM) method provides a tree structure as a logical view of web

page. It is an API for accessing and manipulating structured documents. It represents the

structure of XML and HTML documents.

XML or JSON

They are used for carrying data to and from server. XML is a format for retrieve any type

of data, not just XML data from the web server. However, you can use other formats such

as Plain text, HTML or JSON (JavaScript Object Notation). and it supports protocols HTTP

and FTP. XMLHttpRequest is used heavily in AJAX programming. It is glue for the whole

AJAX operation. JavaScript object that performs asynchronous interaction with the

server. JSON (Javascript Object Notation) is like XML but short and faster than XML.

103

Advantages:

 Speed is enhanced as there is no need to reload the page again.

 AJAX make asynchronous calls to a web server, this means client browsers avoid

waiting for all the data to arrive before starting of rendering.

 Form validation can be done successfully through it.

 Bandwidth utilization – It saves memory when the data is fetched from the same page.

 More interactive.

Disadvantages:

 Ajax is dependent on Javascript. If there is some Javascript problem with the browser

or in the OS, Ajax will not support.

 Ajax can be problematic in Search engines as it uses Javascript for most of its parts.

 Source code written in AJAX is easily human readable. There will be some security

issues in Ajax.

 Debugging is difficult.

 Problem with browser back button when using AJAX enabled pages.

4.1.1 Difference between Synchronous and Asynchronous Web
 Application

 Let’s understand the transmission of data through the synchronous and

synchronous manner over the applications.

 In Synchronous Transmission, data is sent in form of blocks or frames. This

transmission is the full duplex type. Between sender and receiver, the synchronization is

compulsory. In Synchronous transmission, there is no gap present between data. It is

more efficient and more reliable than asynchronous transmission to transfer the large

amount of data.

Fig: 4.1 Synchronous Transmission

104

 In Asynchronous Transmission, data is sent in form of byte or character. This

transmission is the half duplex type transmission. In this transmission start bits and stop

bits are added with data. It does not require synchronization.

 Now let’s see how basic classic (Synchronous) web application and AJAX

(Asynchronous) web application model differs from each other.

 A synchronous request blocks the client until operation completes i.e. browser

is unresponsive. In such case, javascript engine of the browser is blocked.

 As you can see in the above image, full page is refreshed at request time and user

is blocked until request completes. Same can be explained as follows:

Fig: 4.2 Asynchronous Transmission

Fig: 4.3 (a) Classical Web Application working

synchronous manner

Fig: 4.3 (b) Classical Web

Application working synchronous

manner

105

 In classic Web-based applications, a user input triggers a number of resource

requests. Once the requests have been answered by the server, no further communication

takes place until the user's next input. Such communication between client and server is

known as synchronous communication.

 Here is an explanation of classic synchronous communication passing between a

browser and a Web server:

1. The user clicks a UI control in a browser-based web application.

2. The browser converts the user's action into one or more HTTP requests and

passes them along to the Web-application server.

3. The application server responds to the user's requests by returning the requested

data to the user. At this point the application is updated and the synchronous

communication loop is complete. A new synchronous communication loop will

begin when the user next clicks a UI control in their browser.

Asynchronous (AJAX Web-Application Model)

 An asynchronous request doesn’t block the client i.e. browser is responsive. At

that time, user can perform another operation also. In such case, javascript engine of the

browser is not blocked.

 As you can see in the above image, full page is not refreshed at request time and

user gets response from the ajax engine. Let's try to understand asynchronous

communication by the image given below.

Fig: 4.4 (a) AJAX Web Application working

Asynchronous manner

106

 Here is an explanation of AJAX kind of asynchronous communication passing

between a browser and a Web server:

1. User sends a request from the webpage and a javascript call goes to

XMLHttpRequest object.

2. HTTP Request is sent to the server by XMLHttpRequest object.

3. Server fetch the data from the database using JSP, PHP, Servlet, ASP.net etc file.

4. Data is retrieved and view the data in webpage using HTML.

Briefly the difference can be given as follows:

 Synchronous communication is limited due to the lapses in application updates

that are presented to the user at regular intervals. Even if a synchronous application is

designed so that it automatically refreshes information from the application server at

regular intervals (for example, every 12 seconds), there will still be consistent periods of

delay between data refreshes. For many applications, such update delays don't present

an issue because the data they manage don't change often. Some application types

however, for example stock-trading applications, rely on continuously updated

information to provide optimum functionality and usability to their users.

 Web 2.0 web-based applications address this issue by relying on asynchronous

communication. Asynchronous applications deliver continuously updated application

data to users. This is achieved by separating client requests from application updates.

Multiple asynchronous communications between client and server may occur

simultaneously or in parallel with one another.

 While asynchronous communication delivers tremendous value to users, it

presents a serious challenge to software-testing tool vendors who have difficulty

emulating it with traditional test scripts.

Fig: 4.4 (b) AJAX Web Application

working Asynchronous manner

107

4.1.2 XML HttpRequest technology

 XMLHttpRequest object is an API that can be used by JavaScript, JScript, VBScript,

and other web browser scripting languages to transfer and manipulate XML data to and

from a webserver using HTTP, establishing an independent connection channel between

a webpage's Client-Side and Server-Side. Mostly all browser platform support

XMLHttpRequest object to make HTTP requests.

 The data returned from XMLHttpRequest calls will often be provided by back-end

databases. Besides XML, XMLHttpRequest can be used to fetch data in other formats, e.g.

JSON or even plain text.

 Using Ajax XMLHttpRequest object you can make many things easier. So many

new things can't possible using HEAD request. This object allows you to making HTTP

requests and receive responses from the server in the background, without requiring the

user to submit the page to the server (without round trip process).

 Using DOM to manipulate received data from the server and make responsive

contents are added into live page without user/visual interruptions.

 Using this object, you can make very user interactive web application. An object of

XMLHttpRequest is used for asynchronous communication between client and server.

 It performs following operations:

 Sends data from the client in the background.

 Receives the data from the server.

 Updates the webpage without reloading it.

We will see it in details in next topic.

4.2 XML HttpRequest

 Since Ajax requests are usually asynchronous, execution of the script continues as

soon as the Ajax request is sent, i.e. the browser will not halt the script execution until the

server response comes back.

Sending Request and Receiving Response

 For making the AJAX communication possible between the client and server; first

of all the object of XMLHttpRequest must be initiated. It is possible by creating the

variable with new keyword as follows in syntax:

var reqvariable = new XMLHttpRequest();

 By following the above syntax, we create a variable call request1 understanding

the concept here as follows:

108

var request1 = new XMLHttpRequest();

 Now, the next step in sending the request to the server is to instantiating the

newly-created request object using the open() method of the XMLHttpRequest object.

 The open() method typically accepts two parameters— the HTTP request method

to use, such as "GET", "POST", etc., and the URL to send the request to, as per the following

syntax:

open("method", "URL" [, asynchronous_flag [, "username" [, "password"]]])

 Description of the parameters are as follows:

Parameter Required? Description

method required Specifies the HTTP method.
Valid value GET, POST, HEAD, PUT, DELETE,
OPTIONS

URL required Specifies URL that may be either relative
parameter or absolute full URL.

asynchronous_flag optional Specifies whether the request should be
handled asynchronously or not.
Valid value TRUE, FALSE Default value FALSE
TRUE means without waiting for a response,
next code processing to execution queue on
after the send() method.
FALSE means wait for a response after the next
code processing.

username optional Specifies username of authorize user otherwise
set to null.

password optional Specifies password of authorize user otherwise
set to null.

 It migjt be written as follows for the above variable:

request1.open(“GET”,”info.txt”); OR request1.open(“POST”,”students.php”);

 The file mentioned in URL can be of any kind, like .txt or .xml, or server-side

scripting files, like .php or .asp, which can perform some actions on the server (e.g.

inserting or reading data from database) before sending the response back to the client.

 And finally send the request to the server using the send() method of the

XMLHttpRequest object. For the above variable it might be called as:

request1.send(); OR request.send(body);

109

 The send() method accepts an optional body parameter which allow us to specify

the request's body. This is primarily used for HTTP POST requests, since the HTTP GET

request doesn't have a request body, just request headers.

4.2.1 Properties: (onReadyStateChange, readyState, responseText,
 responseXML)

 An object of XMLHttpRequest is used for asynchronous communication between

client and server. XMLHttpRequest (XHR) is an API that can be used by JavaScript, JScript,

VBScript, and other web browser scripting languages to transfer and manipulate XML data to and

from a webserver using HTTP, establishing an independent connection channel between a

webpage's Client-Side and Server-Side.

 The data returned from XMLHttpRequest calls will often be provided by back-end

databases. Besides XML, XMLHttpRequest can be used to fetch data in other formats, e.g.

JSON or even plain text.

 It performs following operations:

 Sends data from the client in the background.

 Receives the data from the server.

 Updates the webpage without reloading it.

It has following properties:

Property Description

onReadyStateChange
It is called whenever readystate attribute changes. It must not be used with

synchronous requests.

readyState

represents the state of the request. It ranges from 0 to 4.

 0 UNOPENED open() is not called. After you have created the

XMLHttpRequest object, but before you have called the open()

method.

 1 OPENED open is called but send() is not called. After you have called

the open() method, but before you have called send().

 2 HEADERS_RECEIVED send() is called, and headers and status are

available.

 3 LOADING Downloading data; responseText holds the data. After the

browser has established a communication with the server, but before

the server has completed the response.

 4 DONE The operation is completed fully. After the request has been

completed, and the response data has been completely received from

the server.

responseText It returns the response as text

110

responseXML

Returns the response as XML. This property returns an XML document object,

which can be examined and parsed using the W3C DOM node tree methods

and properties.

Status

Returns the status as a number

200: "OK"

403: "Forbidden"

404: "Not Found"

statusText Returns the status as a string (e.g., "Not Found" or "OK")

4.2.2 XMLHttpRequest Methods: (open(), send(), setRequestHeader())

Method Description

abort() Cancels the current request

getAllResponseHeaders() Returns header information

getResponseHeader() Returns specific header information

void open(method, URL)* opens the request specifying get or post method and
url.

void open(method, URL, async)* same as above but specifies asynchronous or not.

void open(method, URL, async, username,
password)*

same as above but specifies username and
password.

void send()* sends get request.

void send(string)* send post request.

setRequestHeader(header,value) it adds request headers.

Note: * indicated the methods are explained in detail in the topic 4.2 beginning.

4.3 Working of AJAX and its architecture

Working of AJAX

 Ajax communicates with the server by using XMLHttpRequest Object. User send

request from User Interface and JavaScript call goes to the XMLHttpRequest Object after

that XMLHttp request is sent to the XMLHttpRequest Object. At that time server interacts

with the database using php, servelet, ASP.net etc. The data is retrieved then the server

sends data in the form of XML or Jason data to the XMLHttpRequest Callback function.

111

Then HTML and CSS displayed the Data on the browser. These all above process we

discuss in point by point format for better understanding.

 As you can see in the figure below, XMLHttpRequest object plays a important role.

1. User sends a request from the UI and a javascript call goes to XMLHttpRequest

object.

2. HTTP Request is sent to the server by XMLHttpRequest object.

3. Server interacts with the database using JSP, PHP, Servlet, ASP.net etc.

4. Data is retrieved.

5. Server sends XML data or JSON data to the XMLHttpRequest callback function.

6. HTML and CSS data is displayed on the browser.

In Ajax model, there is an Ajax engine involved in between the user and the server,

which eliminates the to and fro from the user to the server and back. This Ajax engine is

written in JavaScript and is in a hidden frame. It handles the user front by communicating

to the user as well as handles the server front by itself. This way, the end user barely faces

a waiting period.

Architecture of AJAX

 AJAX Wen application model uses JavaScript and XMLHttpRequest object for

asynchronous data exchange. The JavaScript uses the XMLHttpRequest object to

exchange data asynchronously over the client and server.

`

Fig: 4.5 AJAX working example

112

 AJAX Web application model resolve the major problem of synchronous request-

response model of communication associated with classical Web application

model, which keeps the user in waiting state and does not provide the best user

experience.

 AJAX, a new approach to Web applications, which is based on several technologies

that help in developing applications with better user experience. It uses JavaScript

and XML as the main technology for developing interactive Web applications.

 The AJAX application eliminates the start-stop-start-stop nature or the click, wait,

and refresh criteria of the client-server interaction by introducing intermediary

layer between the user and the Web server.

 Instead of loading the Web page at the beginning of the session, the browser loads

the AJAX engine written in JavaScript.

 Every user action that normally would generate an HTTP request takes the form

of a JavaScript call to the AJAX Engine.

Fig: 4.6 AJAX Application Model

113

 The server response comprises data and not the presentation, which implies that

the data required by the client is provided by the server as the response, and

presentation is implemented on that data with the help of markup language from

Ajax engine.

 The JavaScript does not redraw all activities instead only updates the Web page

dynamically.

 In JavaScript, it is possible to fill Web forms and click buttons even when the

JavaScript has made a request to the Web server and the server is still working on

the request in the background. When server completes its processing, code

updates just the part of the page that has changed. This way client never has to

wait around. That is the power of asynchronous requests.

 AJAX Engine between the client and the application, irrespective of the server,

does asynchronous communication. This prevents the user from waiting for the

server to complete its processing.

 The AJAX Engine takes care of displaying the UI and the interaction with the server

on the user’s behalf.

114

Chapter – 5

Node.JS

115

 Node.js is a cross-platform environment and library for running JavaScript

applications which is used to create networking and server-side applications.

5.1 Concept, Working and Features

 Node.js is a cross-platform runtime environment and library for running

JavaScript applications outside the browser. It is used for creating server-side and

networking web applications. It is open source and free to use. It can be downloaded from

this link https://nodejs.org/en/

 Many of the basic modules of Node.js are written in JavaScript. Node.js is mostly

used to run real-time server applications.

 The definition given by its official documentation is as follows:

 “Node.js is a platform built on Chrome's JavaScript runtime for easily building fast

and scalable network applications. Node.js uses an event-driven, non-blocking I/O model

that makes it lightweight and efficient, perfect for data-intensive real-time applications

that run across distributed devices.”

 Node.js also provides a rich library of various JavaScript modules to simplify the

development of web applications.

Fig:5.1 Components of Node JS

https://nodejs.org/en/

116

Features of Node.JS

 Following is a list of some important features of Node.js that makes it the first

choice of software architects.

1. Extremely fast: Node.js is built on Google Chrome's V8 JavaScript Engine, so its

library is very fast in code execution.

2. I/O is Asynchronous and Event Driven: All APIs of Node.js library are

asynchronous i.e. non-blocking. So a Node.js based server never waits for an API

to return data. The server moves to the next API after calling it and a notification

mechanism of Events of Node.js helps the server to get a response from the

previous API call. It is also a reason that it is very fast.

3. Single threaded: Node.js follows a single threaded model with event looping.

4. Highly Scalable: Node.js is highly scalable because event mechanism helps the

server to respond in a non-blocking way.

5. No buffering: Node.js cuts down the overall processing time while uploading

audio and video files. Node.js applications never buffer any data. These

applications simply output the data in chunks.

6. Open source: Node.js has an open source community which has produced many

excellent modules to add additional capabilities to Node.js applications.

7. License: Node.js is released under the MIT license.

5.1.1 Downloading Node.JS

 To install and setup an environment for Node.js, you need the following
two software available on your computer:

1. Text Editor.

2. Node.js Binary installable

 You can download the latest version of Node.js installable archive file
from https://nodejs.org/en/. Details of installation is mentioned in the next
topic.

5.2 Setting up Node.JS server (HTTP Server)

 5.2.1 Installing On Windows

 There are various installers available on https://nodejs.org/en/. The installation

files are available for Windows, Linux, Solaris, MacOS.

https://nodejs.org/en/
https://nodejs.org/en/.%20The%20installation%20files%20are%20available%20for%20Windows,%20Linux,%20Solaris,%20MacOS.
https://nodejs.org/en/.%20The%20installation%20files%20are%20available%20for%20Windows,%20Linux,%20Solaris,%20MacOS.

117

Download the installer for windows by clicking on LTS or Current version button.

Here, we will install the latest version LTS for windows that has long time support.

However, you can also install the Current version which will have the latest features.

After you download the MSI, double-click on it to start the installation as shown

below.

118

Accept the terms of license agreement.

119

 Choose the location where you want to install.

120

Ready to install:

121

Verify Installation

 Once you install Node.js on your computer, you can verify it by opening the
command prompt and typing node -v. If Node.js is installed successfully then it
will display the version of the Node.js installed on your machine, as shown
below.

122

5.2.2 Components

A Node.js application consists of the following three important components –

1. Import required modules: The "require" directive is used to load a Node.js

module.

2. Create server: You have to establish a server which will listen to client's request

similar to Apache HTTP Server.

3. Read request and return response: Server created in the second step will read

HTTP request made by client which can be a browser or console and return the

response.

We will see them in details below:

5.2.2.1 Required modules, Create Server (http.createserver())

Require Modules: Method require() is used to consume modules. It allows you

to include modules in your app. You can add built-in core Node.js modules,

community-based modules (node_modules), and local modules too.

 Node.js follows the CommonJS module system, and the built-in require

function is the easiest way to include modules that exist in separate files. The basic

functionality of require is that it reads a JavaScript file, executes the file, and then

proceeds to return the exports object.

var module = require('module_name');

 As per above syntax, specify the module name in the require() function. The

require() function will return an object, function, property or any other JavaScript

type, depending on what the specified module returns.

 We use the require directive to load the http module and store the returned

HTTP instance into an http variable as follows –block1

var http = require("http");

 In the above example, require() function returns an object because http module

returns its functionality as an object, you can then use its properties and methods using

dot notation e.g. http.createServer().

Create server: In the second component, you have to use created http instance

and call http.createServer() method to create server instance and then bind it at

port 8081 using listen method associated with server instance. Pass it a function

with request and response parameters and write the sample implementation to

return "Hello World". Check the example below: block2

https://www.thirdrocktechkno.com/services/web-development/nodejs-development/

123

http.createServer(function (request, response) {

 // Send the HTTP header

 // HTTP Status: 200 : OK

 // Content Type: text/plain

 response.writeHead(200, {'Content-Type': 'text/plain'});

 // Send the response body as "Hello World"

 response.end('Hello World\n');

}).listen(8081);

// Console will print the message

console.log('Server running at http://127.0.0.1:8081/');

5.2.2.2 Request and Response

Now combine the block 1 and block 2 and save the file as check.js; while executing

the above it will just create an HTTP server which listens to the port mentioned as

8081 on the local machine.

For starting the server, we need to start the command prompt as follows:

124

 Click the start menu and type node.js command prompt. Once the

command prompt is open just move the location where the check.js file is stored.

 Once you get the message like server is running at ….. , We can just open

any browser and check for the http://127.0.0.1:8081/

 Now, if you make any changes in the " check.js" file, you need to again run

the "node check.js" command.

 This is how the http server is created and request which are sent over https

server are responded from the port 8081.

http://127.0.0.1:8081/

125

5.3 Built-In Modules

 In Node.js, Modules are the blocks of encapsulated code that communicates with

an external application on the basis of their related functionality. Modules can be a single

file or a collection of multiples files/folders. The reason programmers are heavily reliant

on modules is because of their re-usability as well as the ability to break down a complex

piece of code into manageable chunks.

 Node.js has many built-in modules that are part of the platform and comes with

Node.js installation. Node Js Core Modules comes with its installation by default. You can

use them as per application requirements. These modules can be loaded into the program

by using the require function.

5.3.1 require () function

 The require () function will return a JavaScript type depending on what the

particular module returns.

var module = require('module_name');

 The following example demonstrates how to use the Node.js Http module to create

a web server.

var http = require('http');

http.createServer(function (req, res) {

res.writeHead(200, {'Content-Type': 'text/html'});

res.write('Welcome to this page!');

res.end();

}).listen(3000);

 In the above example, the require() function returns an object because the Http module returns its

functionality as an object. The function http.createServer() method will be executed when someone

tries to access the computer on port 3000. The res.writeHead() method is the status code where 200

means it is OK, while the second argument is an object containing the response headers.

Module Description

OS Module Provides basic operating-system related utility functions.
var os = require("os")

Path Module Provides utilities for handling and transforming file paths.
var path = require("path")

Net Module Provides both servers and clients as streams. Acts as a network wrapper.
var net = require("net")

DNS Module Provides functions to do actual DNS lookup as well as to use underlying
operating system name resolution functionalities.

var dns = require("dns")

126

Domain Module Provides ways to handle multiple different I/O operations as a single group.
var domain = require("domain")

5.3.2 User Defined Modules: Create and include

Modules are the collection of JavaScript codes in a separate logical file that can

be used in external applications on the basis of their related functionality. Modules

are popular as they are easy to use and are reusable. Sometimes it is required that,

when you are implementing a Node.js application for a use case, you might want to

keep your business logic separately. In such cases you create a Node.js module with

all the required functions in it.

Create Modules (exports)

The module.exports is a special object which is included in every JavaScript file

in the Node.js application by default. The module is a variable that represents the

current module, and exports is an object that will be exposed as a module. So,

whatever you assign to module.exports will be exposed as a module.

To create a module in Node.js, the exports keyword is used. This keyword tells

Node.js that the function can be used outside the module. A Node.js Module is a .js file

with one or more functions.

The syntax to define a function in Node.js module is

exports.<function_name> = function (argument_1, argument_2, .. argument_N)

 {

 /** function body */

 };

 exports – is a keyword which tells Node.js that the function is available outside

the module.

 function_name – is the function name using which we can access this function in

other programs.

As mentioned above, exports is an object. So it exposes whatever you assigned

to it as a module. For example, if you assign a string literal then it will expose that

string literal as a module.

127

The following example exposes simple string message as a module in

Message.js.

module.exports = 'Hello world';

Include Modules (require)

Node.js follows the CommonJS module system, and the built-

in require function is the easiest way to include modules that exist in separate files.

The basic functionality of require is that it reads a JavaScript file, executes the file, and

then proceeds to return the exports object. An example module:

Now, import this message module and use it as shown below.

var msg = require('./Messages.js');

console.log(msg);

Run the above example and see the result, as shown below.

C:\> node app.js

 Hello World

Export Object

 The exports is an object. So, you can attach properties or methods to it. The

following example exposes an object with a string property in Message.js file.

exports.SimpleMessage = 'Hello world';

//or

module.exports.SimpleMessage = 'Hello world';

 In the above example, we have attached a property SimpleMessage to the exports

object. Now, import and use this module, as shown below: app.js

var msg = require('./Messages.js');

console.log(msg.SimpleMessage);

 In the above example, the require() function will return an object {

SimpleMessage : 'Hello World'} and assign it to the msg variable. So, now you can

use msg.SimpleMessage.

 Run the above example by writing node app.js in the command prompt and see

the output as shown below.

C:\> node app.js

Hello World

 In the same way as above, you can expose an object with function. The following

example exposes an object with the log function as a module: Log.js

128

 module.exports.log = function (msg) {

 console.log(msg); };

 The above module will expose an object- { log : function(msg){

console.log(msg); } } . Use the above module as shown below: app.js

var msg = require('./Log.js');

msg.log('Hello World');

 Run and see the output in command prompt as shown below.

C:\> node app.js

Hello World

 You can also attach an object to module.exports, as shown below: data.js

 module.exports = {

 firstName: 'James',

 lastName: 'Bond'

}

app.js

 var person = require('./data.js');

console.log(person.firstName + ' ' + person.lastName);

 Run the above example and see the result, as shown below.

C:\> node app.js

James Bond

5.3.3 HTTP module

 To make HTTP requests in Node.js, there is a built-in module HTTP in Node.js to

transfer data over the HTTP. To use the HTTP server in node, we need to require the

HTTP module. The HTTP module creates an HTTP server that listens to server ports

and gives a response back to the client. The HTTP core module is a key module to Node.js

networking. It is designed to support many features of the HTTP protocol.

We can create a HTTP server with the help of http.createServer() method. (Ex:testing.js)

var http = require('http'); // Create a server

http.createServer((request, response)=>{ // Sends a chunk of the response body

 response.write('Hello World!');

 // Signals the server that all of the response headers and body have been sent

response.end();

})

.listen(3000); // Server listening on port 3000

129

Above code will start the webserver by running the command node testing.js

var http = require('http');

var options = {

 host: 'www.amrolicollege.org',

 path: '/sports2122',

 method: 'GET'

};

// Making a get request to 'www.amrolicollege.org'

http.request(options, (response) => { // Printing the statusCode

 console.log(`STATUS: ${response.statusCode}`);

}).end();

 Above example will display the status code of the request made on server.

 The HTTP module provides some properties and methods, and some classes.

http.METHODS

This property lists all the HTTP methods supported:

> require('http').METHODS
['ACL', 'BIND', 'CHECKOUT', 'CONNECT', 'COPY', 'DELETE', 'GET', 'HEAD', 'LINK', 'LOCK', 'M-SEARCH',
'MERGE', 'MKACTIVITY', 'MKCALENDAR', 'MKCOL', 'MOVE', 'NOTIFY', 'OPTIONS', 'PATCH', 'POST',
'PROPFIND', 'PROPPATCH', 'PURGE', 'PUT', 'REBIND', 'REPORT', 'SEARCH', 'SUBSCRIBE', 'TRACE',
'UNBIND', 'UNLINK', 'UNLOCK', 'UNSUBSCRIBE']

http.STATUS_CODES

This property lists all the HTTP status codes and their description:

> require('http').STATUS_CODES
{
 '100': 'Continue',
 '101': 'Switching Protocols',
 '102': 'Processing',
 '103': 'Early Hints',
 '200': 'OK',
 '201': 'Created',
 '202': 'Accepted',
 '203': 'Non-Authoritative Information',
 '204': 'No Content',
 '205': 'Reset Content',
 '206': 'Partial Content',
 '207': 'Multi-Status',
 '208': 'Already Reported',
 '226': 'IM Used',
 '300': 'Multiple Choices',
 '301': 'Moved Permanently',
 '302': 'Found',
 '303': 'See Other',
 '304': 'Not Modified',
 '305': 'Use Proxy',
 '307': 'Temporary Redirect',

130

 '308': 'Permanent Redirect',
 '400': 'Bad Request',
 '401': 'Unauthorized',
 '402': 'Payment Required',
 '403': 'Forbidden',
 '404': 'Not Found',
 '405': 'Method Not Allowed',
 '406': 'Not Acceptable',
 '407': 'Proxy Authentication Required',
 '408': 'Request Timeout',
 '409': 'Conflict',
 '410': 'Gone',
 '411': 'Length Required',
 '412': 'Precondition Failed',
 '413': 'Payload Too Large',
 '414': 'URI Too Long',
 '415': 'Unsupported Media Type',
 '416': 'Range Not Satisfiable',
 '417': 'Expectation Failed',
 '418': "I'm a Teapot",
 '421': 'Misdirected Request',
 '422': 'Unprocessable Entity',
 '423': 'Locked',
 '424': 'Failed Dependency',
 '425': 'Too Early',
 '426': 'Upgrade Required',
 '428': 'Precondition Required',
 '429': 'Too Many Requests',
 '431': 'Request Header Fields Too Large',
 '451': 'Unavailable For Legal Reasons',
 '500': 'Internal Server Error',
 '501': 'Not Implemented',
 '502': 'Bad Gateway',
 '503': 'Service Unavailable',
 '504': 'Gateway Timeout',
 '505': 'HTTP Version Not Supported',
 '506': 'Variant Also Negotiates',
 '507': 'Insufficient Storage',
 '508': 'Loop Detected',
 '509': 'Bandwidth Limit Exceeded',
 '510': 'Not Extended',
 '511': 'Network Authentication Required'
}

http.globalAgent

The http.globalAgent is a global object of the http.Agent class, which is utilized for all the HTTP

client requests by default. It is used to control connections persistence, and reuse for HTTP

clients. Moreover, it is a significant constituent in Node.js HTTP networking.

http methods are described in the next topic.

5.4 Node.JS as Web Server

 When you view a webpage in your browser, you are making a request to another

computer on the internet, which then provides you the webpage as a response. That

131

computer you are talking to via the internet is a web server. A web server receives HTTP

requests from a client, like your browser, and provides an HTTP response, like an HTML

page or JSON from an API. To access web pages of any web application, you need a web

server. The web server will handle all the http requests for the web application e.g IIS is

a web server for ASP.NET web applications and Apache is a web server for PHP or Java

web applications.

 A lot of software is involved for a server to return a webpage. This software

generally falls into two categories: frontend and backend. Front-end code is concerned

with how the content is presented, such as the color of a navigation bar and the text

styling. Back-end code is concerned with how data is exchanged, processed, and stored.

Code that handles network requests from your browser or communicates with the

database is primarily managed by back-end code.

 Node.js allows developers to use JavaScript to write back-end code, even though

traditionally it was used in the browser to write front-end code. Having both the frontend

and backend together like this reduces the effort it takes to make a web server, which is

a major reason why Node.js is a popular choice for writing back-end code.

 There are a variety of modules such as the “http” and “request” module, which

helps in processing server related requests in the webserver space. We will have a look

at how we can create a basic web server application using Node js.

 Node.js provides capabilities to create your own web server which will handle

HTTP requests asynchronously. You can use IIS or Apache to run Node.js web application

but it is recommended to use Node.js web server.

5.4.1 createserver (), writehead () method

 Node.js has a built-in module called HTTP, which allows Node.js to transfer data

over the Hyper Text Transfer Protocol (HTTP). The HTTP module can create an HTTP

server that listens to server ports and gives a response back to the client. Refer the

code below to understand the concept; filename:helloserver.js

var http=require('http')

var server=http.createServer((function(request,response)

{

 response.writeHead(200,

 {"Content-Type" : "text/plain"});

 response.end("Hello World\n");

}));

server.listen(8081);

1

3

4

5

2

https://www.digitalocean.com/community/tutorials/how-to-work-with-json-in-javascript
https://en.wikipedia.org/wiki/Web_server
https://en.wikipedia.org/wiki/Web_server
https://nodejs.org/en/about/
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-javascript
https://www.guru99.com/node-js-tutorial.html

132

1. The basic functionality of the require function is that it reads a JavaScript file,

executes the file, and then proceeds to return the exports object. So in our case,

since we want to use the functionality of the http module, we use the require

function to get the desired functions from the http module so that it can be used

in our application.

2. In this line of code, we are creating a server application which is based on a simple

function. This function is called whenever a request is made to our server

application. The request object can be used to get information about the current HTTP

request e.g., url, request header, and data. The response object can be used to send a

response for a current HTTP request.

3. When a request is received, we are saying to send a response with a header type

of ‘200.’ This number is the normal response which is sent in an http header when

a successful response is sent to the client.

4. In the response itself, we are sending the string ‘Hello World.’

5. We are then using the server.listen function to make our server application listen

to client requests on port no 8081. You can specify any available port over here.

 Run the above web server by writing node helloserver.js command in command

prompt or terminal window and it will display message of node.js is running of port

no. 8081.

 The http.createServer() method includes request and response parameters which is

supplied by Node.js. The request object can be used to get information about the current

HTTP request e.g., url, request header, and data. The response object can be used to send a

response for a current HTTP request.

var http = require('http'); // Import Node.js core module

var server = http.createServer(function (req, res) { //create web server

 if (req.url == '/') { //check the URL of the current request

 // set response header

 res.writeHead(200, { 'Content-Type': 'text/html' });

 // set response content

 res.write('<html><body><p>This is home Page.</p></body></html>');

 res.end();

 }

 else if (req.url == "/student") {

 res.writeHead(200, { 'Content-Type': 'text/html' });

 res.write('<html><body><p>This is student Page.</p></body></html>');

 res.end();

https://www.guru99.com/interactive-javascript-tutorials.html
https://nodejs.org/api/http.html#http_http_incomingmessage
https://nodejs.org/api/http.html#http_class_http_serverresponse

133

 }

 else if (req.url == "/admin")

 {

 res.writeHead(200, { 'Content-Type': 'text/html' });

 res.write('<html><body><p>This is admin Page.</p></body></html>');

 res.end();

 }

 else

 res.end('Invalid Request!');

});

server.listen(5000); //6 - listen for any incoming requests

console.log('Node.js web server at port 5000 is running..')

5.4.2 Reading Query String, Split Query String

 In Node.js, functionality to aid in the accessing of URL query string parameters is

built into the standard library. The built-in url.parse method takes care of most of the

heavy lifting for us. Here is an example script using this handy function and an

explanation on how it works:

const http = require('http');

const url = require('url');

http.createServer(function (req, res) {

 const queryObject = url.parse(req.url,true).query;

 console.log(queryObject);

 res.writeHead(200, {'Content-Type': 'text/html'});

 res.end('Feel free to add query parameters to the end of the url');

}).listen(8080);

 To test this code run node app.js (app.js is name of the file) on the terminal and

then go to your browser and type http://localhost:8080/app.js?foo=bad&baz=foo on

the URL bar.

 The key part of this whole script is this line: const queryObject =

url.parse(req.url,true).query;. Let's take a look at things from the inside-out. First

off, req.url will look like /app.js?foo=bad&baz=foo. This is the part that is in the URL

bar of the browser. Next, it gets passed to url.parse which parses out the various

elements of the URL (NOTE: the second parameter is a boolean stating whether the

method should parse the query string, so we set it to true). Finally, we access

the .query property, which returns us a nice, friendly JavaScript object with our query

string data.

 The url.parse() method returns an object which have many key value pairs one of

which is the query object. Some other handy information returned by the method

include host, pathname, search keys.

134

 In the above code:

 url.parse(req.url,true).query returns { foo: 'bad', baz: 'foo' }.

 url.parse(req.url,true).host returns 'localhost:8080'.

 url.parse(req.url,true).pathname returns '/app.js'.

 url.parse(req.url,true).search returns '?foo=bad&baz=foo'.

Parsing with querystring

 Another way to access query string parameters is parsing them using

the querystring builtin Node.js module.

 This method, however, must be passed just a querystring portion of a url. Passing

it the whole url, like you did in the url.parse example, won't parse the querystrings.

const querystring = require('querystring');

const url = "http://example.com/index.html?code=string&key=12&id=false";

const qs = "code=string&key=12&id=false";

console.log(querystring.parse(qs));

// > { code: 'string', key: '12', id: 'false' }

console.log(querystring.parse(url));

// > { 'http://example.com/index.html?code': 'string', key: '12', id: 'false' }

5.5 File System Module

 This module, as the name suggests, enables developers to work with the file

system on its computers. The require () method is used to include the File System module.

Some of the most common uses of this module is to create, read, update, delete, rename

or read files. For example, the function fs.readFile() is used to read files on the computer.

5.5.1 Read files (readFile())

 The Node.js file system module (fs module) allows you to work with the files.

The fs.readFile() is used to read from file.

 There are two ways to read file

1. Read file Asynchronously:

var fs = require('fs');
fs.readFile('my_file.txt', (err, data) => {
 if (err){
 throw err;
 }else{
 console.log("Content of file is: " + data);
 }
});

135

2. Read file Synchronously:

var fs = require('fs');
var filename = 'my_file.txt';
var content = fs.readFileSync(filename);
console.log('Content of file is: ' + content);

5.5.2 Create Files (appendFile(), open (), writeFile())

 There are a bunch of methods used for creating new files are: fs.appendFile (),

fs.open (), fs.writeFile ().

 The append method is used to, as the name suggests, append the given file. Also, if

one particular file is appended but does not exist then a file of the same name will be

created. The syntax of fs.appendFile () would look something like -

fs.appendFile('newfile.txt', 'Hello Konfinity!', function (err) {
if (err) throw err;
console.log('Done!');
});

 The next method to discuss is the fs.open() method. This method takes a "flag" as

the second argument. If the flag is "w", the specified file is opened for writing and if

the called file does not exist then an empty file is created. The syntax of the fs.open()

method will look like

fs.open('newfile2.txt', 'w', function (err, file) {
if (err) throw err;
console.log('Done!');
});

 If you want to replace a particular file and its contents then the fs.writeFile()

method is used. Also, if the file doesn’t already exist, a new one will be created.

fs.writeFile('newfile3.txt', 'Hello Konfinity!', function (err) {
if (err) throw err;
console.log('Saved!');
});

 Apart from these methods included in the file system module of Nodejs, there are

a couple of other methods included too. Let’s look at some of them and understand

the concept in detail.

5.5.3 Update Files (appendFile(), writeFile())

 The methods generally used to update files in a system are fs.appendFile() and

fs.writeFile().

 fs.appendFile() is a method that appends particular content at the end of the file

mentioned in the code. The syntax for the method fs.appendFile() would look like –

fs.appendFile('newfile1.txt', ' This is my text.', function (err) {
if (err) throw err;
console.log('Updated!');

136

});

 This code would append the text "This is my text." to the end of the file that goes

by the name "newfile1.txt".

 Another method is the fs.writeFile() one which replaces the file and content

mentioned in the code. The syntax of the method is:

fs.writeFile('mynewfile3.txt', 'This is my text', function (err) {
if (err) throw err;
console.log('Replaced!');
});

 The code above replaces the content of the file "newfile3.txt": There are methods

to delete files too.

5.5.4 Delete Files (unlink())

 The fs.unlink() method is used to delete a particular file with the File System

module. The syntax of this method will look like –

fs.unlink('newfile2.txt', function (err) {
if (err) throw err;
console.log ('File deleted!');
});

 The code basically deletes the file "newfile2.txt":

5.5.5 Rename Files (rename())

 In Nodejs, developers can also upload files to their computer. Apart from this, the

file system module can also be used to rename files. The fs.rename() method is used

to rename a file. This method renames the file mentioned in the code, the syntax for

the same will look like -

fs.rename('vbp.txt', vbp1.txt', function (err) {
if (err) throw err;
console.log('File Renamed!');
});

 The code above, renames the file "vbp.txt" to "vbp1.txt":

 Also keep in mind that all the methods mentioned above is prefixed with a variable

fs. In these examples above, we took the variable to be ‘fs’, while executing your code,

you would have to explicitly mention it in your code. The code will look something

like - var fs = require('fs');

