
1 Prepared By:
Akansha Srivastav – SDJ International College, Surat.

3. Overview of JavaScript

Overview of client & server side scripting

Client side scripting:

 It is the program that runs on the client machine (browser) and deals with the user

interface/display and any other processing that can happen on client machine like reading/writing

cookies.

1) Interact with temporary storage

2) Make interactive web pages

3) Interact with local storage

4) Sending request for data to server

5) Send request to server

6) work as an interface between server and user

Example: JavaScript, HTML, Ajax, CSS etc.

Server side scripting:

 It is the program that runs on server dealing with the generation of content of web page.

1) Querying the database

2) Operations over databases

3) Access/Write a file on server.

4) Interact with other servers.

5) Structure web applications.

6) Process user input. For example if user input is a text in search box, run a search algorithm on

data stored on server and send the results.

Example: PHP, C++, Python, JSP etc.

Structure of JavaScript

 We can write the JavaScript on the different location of the webpage:

1. Inside <script> tag:

 In HTML, JavaScript code is inserted between <script> and </script> tags.

Example:

<script>

document.getElementById("demo").innerHTML = "My First JavaScript";

</script>

2 Prepared By:
Akansha Srivastav – SDJ International College, Surat.

2. Inside<head>:

 In this example, a JavaScript function is placed in the <head> section of an HTML page.

The function is invoked (called) when a button is clicked:
Example

<!DOCTYPE html>
<html>

<head>
<script>
function myFunction()
{
 document.getElementById("demo").innerHTML = "Paragraph changed.";
}
</script>
</head>
<body>

<h1>A Web Page</h1>
<p id="demo">A Paragraph</p>
<button type="button" onclick="myFunction()">Try it</button>

</body>
</html>

3. Inside<body>:

 In this example, a JavaScript function is placed in the <body> section of an HTML page.

The function is invoked (called) when a button is clicked:

Example

<!DOCTYPE html>
<html>
<body>

<h1>A Web Page</h1>
<p id="demo">A Paragraph</p>
<button type="button" onclick="myFunction()">Try it</button>

<script>
function myFunction() {
 document.getElementById("demo").innerHTML = "Paragraph changed.";
}
</script>

</body>
</html>

3 Prepared By:
Akansha Srivastav – SDJ International College, Surat.

External JavaScript

Scripts can also be placed in external files:

External file: myScript.js

function myFunction()

 {
 document.getElementById("demo").innerHTML = "Paragraph changed.";
}

External scripts are practical when the same code is used in many different web pages.

JavaScript files have the file extension .js.

To use an external script, put the name of the script file in the src (source) attribute of a <script> tag:

Example

<script src="myScript.js"></script>

External JavaScript Advantages

Placing scripts in external files has some advantages:

 It separates HTML and code

 It makes HTML and JavaScript easier to read and maintain

 Cached JavaScript files can speed up page loads

To display data in javascript:

 JavaScript can "display" data in different ways:

 Writing into an HTML element, using innerHTML.

 Example : document.getElementById("demo").innerHTML = 5 + 6;

 Writing into the HTML output using document.write().

 Writing into an alert box, using window.alert().

 Writing into the browser console, using console.log().

4 Prepared By:
Akansha Srivastav – SDJ International College, Surat.

Data types and Variables

Variables:

 There are 3 ways to declare a JavaScript variable:

1. Using var
2. Using let
3. Using const

Variables are containers for storing data (values).

The general rules for constructing names for variables (unique identifiers) are:

 Names can contain letters, digits, underscores, and dollar signs.

 Names must begin with a letter.

 Names can also begin with $ and _ .

 Names are case sensitive (y and Y are different variables).

 Reserved words (like JavaScript keywords) cannot be used as names.

1. Using var:

 Creating a variable in JavaScript is called "declaring" a variable. After the declaration, the
variable has no value (technically it has the value of undefined).To assign a value to the variable, use
the equal sign:

Example:

var carname;
carname = “maruti”;
var newcar = “volvo”;
var car1 = “Toyota” , car2 = “Audi”, car3 = “tavera”;

2. Using let:

 Variables defined with let cannot be Redeclared. Variables defined with let must be Declared
before use.

Example:

let x = "John Doe";
let x = 0;

// SyntaxError: 'x' has already been declared

3. Using const:

 JavaScript const variables must be assigned a value when they are declared.

Example:

const PI = 3.14 ; //Correct
const pi;
pi = 3.14 // Incorrect

5 Prepared By:
Akansha Srivastav – SDJ International College, Surat.

Data Types:

 In javascript, there is no need to specify any type while creating variables. We can use “let”
keyword while creating variable.

Example:

let x=5;

JavaScript has dynamic types. This means that the same variable can be used to hold different data
types:

Example:

let x; // Now x is undefined
x = 5; // Now x is a Number
x = "John"; // Now x is a String

Types:

1. Numbers:

 JavaScript has only one type of numbers. Numbers can be written with, or without decimals:

Example:

let x1 = 34.00; // Written with decimals
let x2 = 34; // Written without decimals

2. Booleans:

 Booleans can only have two values: true or false.

Example:

let x = 5;
let y = 5;
let z = 6;
(x == y) // Returns true
(x == z) // Returns false

3. Strings:

 A string (or a text string) is a series of characters like "John Doe".Strings are written with quotes.
You can use single or double quotes:

Example:

let carName1 = "Volvo XC60"; // Using double quotes
let carName2 = 'Volvo XC60'; // Using single quotes

6 Prepared By:
Akansha Srivastav – SDJ International College, Surat.

4. Arrays:

 JavaScript arrays are written with square brackets. Array items are separated by commas.
Example: The following code declares (creates) an array called cars, containing three items (car
names):

const cars = ["Saab", "Volvo", "BMW"];

5. Objects:

 JavaScript objects are written with curly braces {}.Object properties are written as
name:value pairs, separated by commas.

Example:

const person = {firstName:"John", lastName:"Doe", age:50, eyeColor:"blue"};

6. Undefined:

 In JavaScript, a variable without a value, has the value undefined. The type is also undefined.

Example:
let car;

Any variable can be emptied, by setting the value to undefined. The type will also be undefined.

Example:
car = undefined;

Operators

1. Arithmetic Operators

Arithmetic operators are used to perform arithmetic on numbers:

Operator Description
+ Addition
- Subtraction
* Multiplication
** Exponentiation (ES2016)
/ Division
% Modulus (Division Remainder)
++ Increment
-- Decrement

7 Prepared By:
Akansha Srivastav – SDJ International College, Surat.

2. Assignment Operators

Assignment operators assign values to JavaScript variables.

Operator Example Same As
= x = y x = y
+= x += y x = x + y
-= x -= y x = x - y
*= x *= y x = x * y
/= x /= y x = x / y
%= x %= y x = x % y
**= x **= y x = x ** y

3. Comparison Operators

Operator Description
== equal to
=== equal value and equal type
!= not equal
!== not equal value or not equal type
> greater than
< less than
>= greater than or equal to
<= less than or equal to
? ternary operator

4. Logical Operators

Operator Description
&& logical and
|| logical or
! logical not

5. Conditional Operator (?:) :-

 The conditional (ternary) operator is the only JavaScript operator that takes three operands:
a condition followed by a question mark (?), then an expression to execute if the condition is truth
followed by a colon (:), and finally the expression to execute if the condition is false.

Example:
x = a >b ? a : b;

8 Prepared By:
Akansha Srivastav – SDJ International College, Surat.

Control Structure

Conditional Statement:

1. If Statement:

 if statement to specify a block of JavaScript code to be executed if a condition is true.

Example:
if (hour < 18) {
greeting = "Good day";
}

2.If..Else Statement:

 The If..else statement contains two blocks, one as if statement and second is else statement
where if statement specify a block of JavaScript code to be executed if a condition is true and else
specify a block of code to be executed if the condition is false.

Example:

if (hour < 18) {
 greeting = "Good day";
} else {
 greeting = "Good evening";
}

3. If..ElseIf.. Statement:

 Use the else if statement to specify a new condition if the first condition is false.
Example:

if (time < 10) {
 greeting = "Good morning";
} else if (time < 20) {
 greeting = "Good day";
} else {
 greeting = "Good evening";
}

4. Switch Statement

 In Switch statement, switch block is used to select one of many code blocks to be executed.

Syntax:
switch(expression) {
case x:

9 Prepared By:
Akansha Srivastav – SDJ International College, Surat.

 // code block
break;
case y:
 // code block
break;
default:
 // code block
}

Looping Structure

1. While Loop:

 The while loop loops through a block of code as long as a specified condition is true.

Syntax:
while (condition) {
 // code block to be executed
}

Example:
while (i< 10) {
 text += "The number is " + i;
 i++;
}

2. Do While Loop:

 The do while loop is a variant of the while loop. This loop will execute the code block once,
before checking if the condition is true, then it will repeat the loop as long as the condition is true.

Syntax:
do {
 // code block to be executed
}
while (condition);

Example:

The example below uses a do while loop. The loop will always be executed at least once, even if the
condition is false, because the code block is executed before the condition is tested:

do {
 text += "The number is " + i;
 i++;
}
while (i< 10);

10 Prepared By:
Akansha Srivastav – SDJ International College, Surat.

3. For Loop:
 The for loop has the following syntax:
Syntax:

for (statement 1; statement 2; statement 3) {
 // code block to be executed
}

Statement 1 is executed (one time) before the execution of the code block.
Statement 2 defines the condition for executing the code block.
Statement 3 is executed (every time) after the code block has been executed.

Example:

for (let i = 0; i< 5; i++) {
 text += "The number is " + i + "
";
}

4. For In Loop:

 The for in statement loops through the properties of an Object:

Syntax:

for (key in object) {
 // code block to be executed
}

Example:
const numbers = [45, 4, 9, 16, 25];

let txt = "";
for (let x in numbers) {
 txt += numbers[x];
}

Break and Continue Statement

Break Statement

 The break statement is used to "jumps out" of a loop and switch statement.

Example:
for (let i = 0; i< 10; i++) {
if (i === 3) { break; }
text += "The number is " + i + "
";
}
In the example above, the break statement ends the loop ("breaks" the loop) when the loop counter
(i) is 3.

11 Prepared By:
Akansha Srivastav – SDJ International College, Surat.

Continue Statement
 The continue statement breaks one iteration (in the loop), if a specified condition occurs,
and continues with the next iteration in the loop.

Example:
for (let i = 0; i< 10; i++) {
 if (i === 3) { continue; }
 text += "The number is " + i + "
";
}
In the above example it skips the value of 3.

JavaScript String functions

1. charAt(x): Returns the character at the “x” position within the string.

//charAt(x)
Var myString = 'jQuery FTW!!!';
console.log(myString.charAt(7));
//output: F

2. charCodeAt(x): Returns the Unicode value of the character at position “x” within the string.

//charAt(position)
var message="jquery4u"
//alerts "q"
alert(message.charAt(1))

3. concat(v1, v2,…): Combines one or more strings (arguments v1, v2 etc) into the existing one and
returns the combined string. Original string is not modified.

//concat(v1, v2,..)
var message="Sam"
var final=message.concat(" is a"," hopeless romantic.")
//alerts "Sam is a hopeless romantic."
alert(final)

4. fromCharCode(c1, c2,…): Returns a string created by using the specified sequence of Unicode
values (arguments c1, c2 etc). Method of String object, not String instance. For example:
String.fromCharCode().

//fromCharCode(c1, c2,...)
console.log(String.fromCharCode(97,98,99,120,121,122))
//output: abcxyz
console.log(String.fromCharCode(72,69,76,76,79))
//output: HELLO
//(PS - I have no idea why you would use this? any ideas?)
Also see: Full List of JavaScript Character Codes

12 Prepared By:
Akansha Srivastav – SDJ International College, Surat.

5. indexOf(substr, [start]):Searches and (if found) returns the index number of the searched
character or substring within the string. If not found, -1 is returned. “Start” is an optional argument
specifying the position within string to begin the search. Default is 0.

//indexOf(char/substring)
var sentence="Hi, my name is Sam!"
if (sentence.indexOf("Sam")!=-1)
alert("Sam is in there!")

6. lastIndexOf(substr, [start]) :Searches and (if found) returns the index number of the searched
character or substring within the string. Searches the string from end to beginning. If not found, -1 is
returned. “Start” is an optional argument specifying the position within string to begin the search.
Default is string.length-1.

//lastIndexOf(substr, [start])
varmyString = 'javascriptrox';
console.log(myString.lastIndexOf('r'));
//output: 11

7. match(regexp) :Executes a search for a match within a string based on a regular expression. It
returns an array of information or null if no match is found.

//match(regexp) //select integers only
varintRegex = /[0-9 -()+]+$/;

varmyNumber = '999';
varmyInt = myNumber.match(intRegex);
console.log(isInt);
//output: 999

varmyString = '999 JS Coders';
varmyInt = myString.match(intRegex);
console.log(isInt);
//output: null
Also see: jQueryRegEx Examples to use with .match()

8. replace(regexp/substr, replacetext): Searches and replaces the regular expression (or sub string)
portion (match) with the replaced text instead.

//replace(substr, replacetext)
varmyString = '999 JavaScript Coders';
console.log(myString.replace(/JavaScript/i, "jQuery"));
//output: 999 jQuery Coders

//replace(regexp, replacetext)
varmyString = '999 JavaScript Coders';
console.log(myString.replace(new RegExp("999", "gi"), "The"));
//output: The JavaScript Coders

13 Prepared By:
Akansha Srivastav – SDJ International College, Surat.

9. search(regexp): Tests for a match in a string. It returns the index of the match, or -1 if not found.

//search(regexp)
varintRegex = /[0-9 -()+]+$/;

varmyNumber = '999';
varisInt = myNumber.search(intRegex);
console.log(isInt);
//output: 0

varmyString = '999 JS Coders';
varisInt = myString.search(intRegex);
console.log(isInt);
//output: -1

10. slice(start, [end]): Returns a substring of the string based on the “start” and “end” index
arguments, NOT including the “end” index itself. “End” is optional, and if none is specified, the slice
includes all characters from “start” to end of string.

//slice(start, end)
var text="excellent"
text.slice(0,4) //returns "exce"
text.slice(2,4) //returns "ce"

11. split(delimiter, [limit]): Splits a string into many according to the specified delimiter, and returns
an array containing each element. The optional “limit” is an integer that lets you specify the
maximum number of elements to return.

//split(delimiter)
var message="Welcome to jQuery4u"
//word[0] contains "We"
//word[1] contains "lcome to jQuery4u"
var word=message.split("l")

12. substr(start, [length]): Returns the characters in a string beginning at “start” and through the
specified number of characters, “length”. “Length” is optional, and if omitted, up to the end of the
string is assumed.

//substring(from, to)
var text="excellent"
text.substring(0,4) //returns "exce"
text.substring(2,4) //returns "ce"

13. substring(from, [to]): Returns the characters in a string between “from” and “to” indexes, NOT
including “to” inself. “To” is optional, and if omitted, up to the end of the string is assumed.

//substring(from, [to])
varmyString = 'javascriptrox';
myString = myString.substring(0,10);

14 Prepared By:
Akansha Srivastav – SDJ International College, Surat.

console.log(myString)
//output: javascript

14. toLowerCase(): Returns the string with all of its characters converted to lowercase.

//toLowerCase()
varmyString = 'JAVASCRIPT ROX';
myString = myString.toLowerCase();
console.log(myString)
//output: javascriptrox

15. toUpperCase(): Returns the string with all of its characters converted to uppercase.

//toUpperCase()
varmyString = 'javascriptrox';
myString = myString.toUpperCase();
console.log(myString)
//output: JAVASCRIPT ROX

15 Prepared By:
Akansha Srivastav – SDJ International College, Surat.

JavaScript Events

 An HTML event can be something the browser does, or something a user does.
Here are some examples of HTML events:

 An HTML web page has finished loading

 An HTML input field was changed

 An HTML button was clicked
Often, when events happen, you may want to do something.

JavaScript lets you execute code when events are detected.

HTML allows event handler attributes, with JavaScript code, to be added to HTML elements.

1. Mouse Events

Event

Performed

Event

Handler

Description

click onclick When mouse click on an element

mouseover onmouseover When the cursor of the mouse comes over the

element

mouseout onmouseout When the cursor of the mouse leaves an

element

mousedown onmousedown When the mouse button is pressed over the

element

mouseup onmouseup When the mouse button is released over the

element

mousemove onmousemove When the mouse movement takes place.

16 Prepared By:
Akansha Srivastav – SDJ International College, Surat.

2. Keyboard events:

Event

Performed

Event Handler Description

Keydown&Keyup onkeydown&onkeyup When the user press and then release the

key

3. Form events:

Event

Performed

Event

Handler

Description

focus onfocus When the user focuses on an element

submit onsubmit When the user submits the form

blur onblur When the focus is away from a form element

change onchange When the user modifies or changes the value of a

form element

	Example
	Example (1)
	External file: myScript.js
	Example (2)

