1.1.1 Declaring Two-Dimensional numeric array:

The two-dimensional array can be defined as an array of arrays. The qls
organized as matrices which can be represented as the collection of rows and columns.
Howewer, 2D arrays are created to implement a relational database look alike data
structure. It provides ease of holding the bulk of data at once which can be passed to
any number of functions wherever required.

Declaration of two dimensional Array in C:
The syntax to declare the 2D array is given below.

data_type array_name[rows][columns]);

Consider the following example.
int x[3][4];

Here, x is a two-dimensional {20) array. The array can hold 12 elements. You can think
the array as a table with 3 rows and each row has 4 columns.

Column 0 Column 1

Row 0 m aloli1] aloi2] alo]l3]
Row 1 m a[1][1] al1][2] a[1][3]

Column 3

Column 2

Column index
Row index

Array name

Initialization aof a 2D array
There are many different wave to initialize two-dimensional array
int c[2][3]) = {{1, 3, 0}, {-1, 5, 9}};

int c[J[3] = {{1, 3, 0}, {-1, 5, 9}};
Int c[2][3]) = {1, 3,0, -1, 5, 9},
int arr[4][3]={{1,2,3},{2,3,4}.{3,4,5},{4.5,6}};

T i =i,

| array le in C

#include<stdiao. h=
#include<conio.h>
int main()

int i=0,j=0;

int arr[4][3)={{1,2,3},{2,3,4}{3,4,5}{4,56}}; clrscr(};

[ftraversing 20 array
for{i=0;i<4;i++) // rows
for{j=0;j<3;j+4)

printf(“arr %ed] [%ed] = %ed \n"i j, arr[i]0{10;
T Alend of j
Hfend of |
getch(); return 0;

M cols

OUTPUT:
arr[0][0]
arr[0][1]
arr[0][2]
arr[1][0]
arr[1][1]
arr[1][2]
arr[2][0]
arr[2][1]
arr[2][2]
arr[3][0]
arr[3][1]
arr[3][2]

(=R I T S FERE S EUY R EE N

Difference Between Structure and Array in C

Faram | Structure in C Array in C
ater
Definiti | Itiz a type of dota structure intha | Itis a type of data structure that works as o
on form of a container that holds containar to hold variables of the very same
wvariablas of differant types. type. Array does not support variablas of
muitiple dato types.
Difference Between Structure and Unionin C . :
allocat | Ina structure, the memory The array stores the input data in a mamory
[. ion of allocation for the input dota dliccation of contiguous type. it means that
Param | Structure Union :) B . -
i Mamor | doesn't require being in the array storas its dota in a type of memory
atar ¥ consecutive memaory locations. maodel where the memory blocks hold
. consecutive addresses (it assigns memaory
Keywo | A I EeT deploy the keyword struct | A BT E ;Icploy the keyword union to blocks consecutively).
rd to define a Structura. define a Union.
. i . X Access | For o user to occess the slements | On the other hand, any user can sasily access
Interm The implementation of Structure in C in the case of a Unicn, the memory o) ~))
B) . . ibility present in a structurs, they the alaments by index in an array’'s cosa.
al occurs internally- because it contains | allocation occurs for only one member i
Imple | separate memory locations allotted with the largest size among all the input reql.!lre L B .thm
menta | to every input member. variables. It shares the same location particular Eleme"t.('t L
tion among all these members/objects. mandatory for retrisval).
Acces | A user can access individual A user can access only one member at a Pointar | A structura holds no concapt of An array, on tha other hand, implements
sing members at a given time. given time. internal Fointar. Fointer internally. [t always points at the very
Memb first elarment prasent in the array.
ars
]] i o Instont | Ome can create an objact from An array does not allow tha creation of an
Syntax | The Syntax of declaring a Structure in The Syntax of declaring a Union in C is: iation the structura after a later ohjsct aftar the declaration.
Cis PP
union [union name] declaration in its program.
struct [structure name] q
i Types A structura includes multiple A user cannot have multiple forms of data-
type element _1; of forms of doto-type wariablas in type variables in an array becouse it supports
type element _I; Diato the form of input. only the same form of data-type variablas.
type element _2; Type
type element_2; Variabl
EH
} variable _1, variable _2, .; Perfor A structure becomes vary slow in | The procass of searching and accessing
} variable_1, variable_2, .; manc perfarmaonce dus to the presence | elements is much fostar in the cose of an
El of multiple data-types. The array dus to the absance of multiple data-
size B R e e [T S AUnion does not have a separate proce# of searching and type variables. It is, thus, better and faster in
location for all of its members. It location for every member in it. It makes accessing slements becomes performancs.
makes the size of a Structure to be its size equal to the size of the largest vary slow in these.
greater than or equal to the sum of member among all the data members.
the size of its data members. Syntax | struct sructure_name]{ type name_of _array [size]
Value | Altering the values of a single When you alter the values of a single element type I;
Alterin | member doas not affect the othear marmber, it affects the values of other
' element type 2;
g members of a Structure. members.
Storag | Inthe cose of a Structure, there is a In the case of a Union, there is an
a of specific memory location for every allocation of only one shared mermory for -
Value | input data member. Thus, it can store | all the input data members. Thus, it stores

multiple values of the various
members.

one value at a time for all of its members.

} wariable no., variable no.2, .

% Types of functions
1.

Built-in (Library) Functions: The system provided these functions and stored in

the library. Therefore it is also called Library Functions. e.g. scanf{), printf{},
strepy(), striwr(), stremp(), strden(), strecat() etc. To use these functions, you just
need to include the appropriate C header files.

2. User Defined Functions: These functions are defined by the user at the time of
writing the program.

1.3.1 Function return type, parameter list, local function variables

1.3.2 Passing arguments to function

+ User-defined function{UDF) : You can also create funcbions as per your nesd.
Such functions created by the user are known as user-defined functions.

{Mote: function names are identifiers and should be unique)

How user-defined function works?

#include «<stdio.h>
void functionName() /I UDF
{

int main(}
FunctionName();

}.

The execution of a C program begins from the main() function.
When the compiler encounters functionName();, control of the program jumps to

[void functionName()

And, the compiler starts executing the codes inside functionNamef).
The control of the program jumps back to the main() function once code inside the
function definition is executed.

How function works in C programming?

sndio. e
wold Functiondane{)
i
e
int maind)

{

Functioniame (]}

Advantages of yser-defined function
The program will be easier to understand, maintain and debug.
Reusable codes that can be used in other programs

L R

divided among many programmers.

L
1. It will take lots of extra time for program execution.

L
There are three parts of User Define Function:

1. Function declaration or prototype - This informs compiler about the function name,

function parameters and return value's data type.
2. Function call = This calls the actual function
3. Function definition - This contains all the statements to be executed.

1. Function declaration or prototype:

A function prototype is simply the declaration of a function that specifies function's

name, parameters and retumn type. It doesn't contain function body.

A function prototype gives information to the compiler that the function may later be

used in the program.

Syntax of function prototype:

. Alarge program can be divided into smaller modules. Hence, a large project can be

| returmnType functionName(typel argumentl, type? argument2, ...J;

In the above example, int addNumbers{int a, int b); is the function prototype which

provides the following information to the compiler:

1) name of the function is addMumbers()

2] retum type of the function is int

3) two arguments of type int are passed to the function

MNote: The function prototype is not needed if the user-defined function is defined before

the main() function.

2. Calling a function
Control of the program is transfermred to the user-defined function by calling it
Syntax of function call:

| functionMame({argumentl, argument?, ...};

In the above example, the function call is made using addMumbers{nl, n2); statement

inside the main() function.

3. Function definition

Function definition contains the block of code to perform a specific task. In our example,

adding two numbers and returning it.
Syntax of function definition:

returnType functionMame(datatypel argumentl, datatype? argument2, ...}

[fbady of the function

h

When a function is called, the control of the program is transterred to the function
definition. And, the compiler starts executing the codes inside the body of a function.

2.3 Python Datatypes:
* In programming, data type Is an important concept
+ Variables can store data of different types, and different types can do different things.

= Python has the following data types bullt-in by default, in these categories:

Data Types Keywords
Taxt Types: str

Murneric Types: int, float, complex
Boolean Type: ool

Page 4

Getting the Data Type

Chapter 2: Python Fundamentals

= You can get the data type of any object by using the type{) function:

Example:
x=5 Output:
printitypeix]] =rlass 'Int'>

Satting the Data Type

= In Python, the data type |s set when you assign a value to a variable:

Examplel: Creating a user defined function bers() Example: Data Types

#indude =stdio.h= % = "Hello World" str

int addnumbers(int num1, int num2}); J/{ Function dedaration or prototype =20 int

int main() x=205 float

i A=1j complex
int varl, var2,sum; clrsor); s bool

printf|{"Enter number 1: ");
scanfi"%d" Bwvarl);

printf{"Enter number 2: ");
scanf("%d", &var2);

sum = addnumbers (varl, var2);
printf{"Output: %d", sum); getch();
return 0;

ff function calling

int addnumbers {int numl, int num2} J{ Function definition
i
int result;
result = numil+numa2;
return result;

Jf Arguments are used here

b
Output:

Enter number 1: 100
Enter number 2: 120
Output: 220

Type Conversions and Casting:

« If you want to specify the data type of a variable, this can be done with casting.

®=s5tr(3) i xwill be '3’
y=Int(3) #ywilbe3
z = float|3) # zwill be 3.0

Other Examples:

Example Data Type
w=str"Hello World™) str

% = int(20) it

= float|20.5) float

x = complex(1]] Complex
% = bool(5) bool

String Operators

Operator Description

Consider the following example to understand the real use of Python operators.

+*

It is known as concatenation operator used to join the strings given either
side of the operator.

=

It is known as repetition operator. It concatenates the multiple copies of the
same string.

It is known as slice operator. It is used to access the sub-strings of a
particular string.

[:1

It is known as range slice operator. It is used to access the dharacters from
the specified range.

It is known as membership operator. It retumns if a particular sub-string is
present in the specified string.

not in

It is also a membership operator and does the exact reverse of in. It returns
true if a particular substring is mot present in the spedfied string.

r/R

It is used to specify the raw string. Raw strings are used in the cases where
we need to print the actual meaning of escape characters such as
"C://python”. To define any string as a raw string, the character ror R is
followed by the string.

It is used to perform string formatting. It makes use of the format specifiers
used in C programming like %d or %f to map their values in python. We will
discuss how formatting is done in python.

str = "Hello”

strl = * world”
primt(str*3)
print{str+strl)
print(str{4]}
print{str{2:4]});
print{'w" in str)
print{'wo' not in strl}
print(r'C://python39")

Output:
HelloHelloHello
Hello world

[u]

[}

False

False
C:f/pythan39
The string str : Hello

print("The string str : %s"%(str))

prints HelloHelloHello

prints Hello world

prints o

prints Il

prints false as w is not present in str

prints false as wo is present in stri.

prints C://python37 as it is written

prints The string str : Hello

3.2.3 Comparison Operators (==, I=, > < »= =)

Comparison operators are used to comparing the value of the two operands and
returns Boolean true or false accordingly. The comparison operators are describad in
the following table.

3.1.3 Comparison Operators (==, =, > < == o=)

Comparison operators are used to comparing the value of the two operands and
retums Boolean true or false accordingly. The comparison operators are described in
the following tabla.

Dperator | Description

- If the value of two operands is equal, then the condition becomes true.

T= Tf the value of two operands is not egual, then the condition becomes true.

<m If the first operand is less than or eqgual to the second operand, then the
condition becomes true.

m If the first operand is greater than or equal to the second operand, then the
condition becomes true.

= If the first operand is greater than the second operand, then the condition
becomes true.

- If the first operand is less than the second operand, then the condition

becomes true.

Operator | Description

== If the value of two operands is equal, then the condition becomes true.

T= Tf the walue of two operands is not equal, then the condition becomes true.

o= If the first operand is less than or equal to the second operand, then the
condition becomes true.

== If the first operand is greater than or equal to the second operand, then the
condition becomes true.

El If the first operand is greater than the second operand, then the condibion
becomes true.

< If the first operand is less than the second operand, then the condition

becomes true.

3.2.4 Logical Operators (and, or, not)
The legical operators are used primarily in the expression evaluation to make a decision.

3.2.4 Logical Operators (and, or, not)
The logical operators are used primarily in the expression evaluation to make a decision.

Python supports the following logical operators.

Operator | Description

and If both the expression are true, then the condition will be true. If a and b are
the two expressions, a — true, b — true == 3 and b — frue.

or If ane of the expressions is true, then the condition will be true. Ifaand b
are the two expressions, a — true, b — false => a or b — true.

not If an expression a is true, then not (a) will be false and vice versa.

Python supports the following logical operators.

Operator | Description

and If both the expression are true, then the condition will be true. If a and b are
the two expressions, 8 — true, b — true => a and b — trus.

or If one of the expressions is true, then the condition will be true. Ifa and b
are the two expressions, a — true, b — false => aorb — true.

not If an expression a is true, then not (a) will be false and vice versa.

3.2.5 Identity and member operators (is, is not, in, not in)

Membership Operators

Python membership operators are used to check the membership of value inside a
Python data structure. If the value is present in the data structure, then the resulting

3.2.5 Identity and member operators (is, is not, in, not in)

Membership Operators

Python membership operators are used to check the membership of value inside a
Python data structure. If the walue is present in the data structure, then the resulting

value is tru

e otherwise it returns false.

to the same object.

walue is true o‘then_fis? it returns false. ﬂperntnr De«scrip-tion
Operator | Description - -
— - in It is evaluated to be true if the first operand is found in the second operand
in It is evaluated to be true if the first operand is found in the second operand {list, tuple, or dictionary)
(list, tuple, or dictionary). ot Tt s evaluated to be true iF the first J 5= not found n T d
not in It is evaluated to be true if the first operand is not found in the second n n = EU; ul' DI = m:.' e operand Is na nd in the secan
operand (list, tuple, or dictionary). — operand {list, tuple, or dictionary}.
Identity Operators Identity Operators
The identity operators are used to decide whether an element certain class or type. The identity operators are used to decide whether an element certain class or type.
Operator | Description Operator | Description
is It is evaluated to be true if the reference present at both sides point to the is It is evaluated to be true if the reference present at both sides point to the
_ same object. _ same object.
is not It is evaluated to be true if the reference present at both sides do not point is not It is evaluated to be true if the reference present at both sides do not point

to the same object.

3.1.3 String Methods: (center, count, join, len, max, min, replace, lower, upper,

replace, split)
No Method Description

1 format(value) It returns a formatted wersion of 5, using the passed
value.

Eg: #named indexes:

tetl = "My name is {fname}, I'm
{age}".format(fname = "lohn", age = 36)
#numbered indexes:

bet2 = "My name is {0}, I'm {1}".format("John",36)
#empty placeholders:

bet3 = "My name is {}, I'm {}".format{"John",36)

print{txtl)
print{txt2)
print{txt3)
2 center{width ,fillchar) It returns a space padded string with the original
string centred with egual number of left and right
Operator Precedence Spaces.
The precedence of the operators is essential to find out since it enables us to know which Eg: str = "Hello Javatpoint”
operator should be evaluated first. The precedence table of the operators in Python is # Calling function
given below. str2 = str.center(20,'#')
Displaying result
Operator Description print("0ld value:", str)
— — print{"New value:", str2)
% sponent operator is given priorly ower all the athens 3 string.count{value, start, | It returns the number of times a specified value
used in the expression. 9. ' ' > e
- — end) appears in the string.
~t- negation, unary plus, and minus. value: Required. A String. The string to value to
* f o multiplication, divide, modules, reminder, and floor search for
/ i division. start: Optional. An Integer. The position to start the
+ - Binary plus, and minus search. Defaultis 0 N
== << Left shift. and right shift end: Dptlonal._ An Integer. The position to end the
= — search. Default is the end of the string
& Binary and(Bitwise) Egl: txt = "I love apples, apple are my favorite fruit™
| Binary xor, and or (Bitwise) x = txt.count{"apple”)
=< > 2= Comparison operators (less than, less than equal to, print{x})
B ~ | greater than, greater then egual to). Bgl: txt = "I love apples, apple are my favorie frit”
<= == l= | Equality operators. ;n?:{nx}m”"": apple”, 10, 24)
= %= [= 4 join{seq) It merges the strings representation of the given
/= == Assignment operators sequence.
+= Eg: str="-2" # string
= R list = {'Java’,'C#' 'Python'} # iterable
is is not | Identity operators str = str-join(list)
in notin | Membership operators print{str2)
= b op 5 len{string) It returns the length of a string.
not or and | Logical operators Eg: x = len{"Hella™)
prink{x}

6 max({]) It returns the item with the highest value, or the item
with the highest value in an iterable.
If the values are strings, an alphabetically comparison

is done.
Eg: ® = max("Mike", "John", "Vicky")
print(x}
7 min() It returns the item with the lowest value, or the item

with the lowest value in an iterable.
If the values are strings, an alphabetically comparison

is done.
Eg: x = min{"Bhumi", "John", "Vicky")
print{x)

a replace{old,new[,count]} | It replaces the old sequence of characters with the
new sequence. The max characters are replaced if max
is given.

Egl: txt = "one one was a race horse, two two was
one too."

x = tut.replace("one”, "three")

print{x)

Eg2: txt = "one one was a race horse, two two was
one too."

x = twt.replace{"one”, “three", 2]

print(x)

9 upper() It conwverts all the characters of a string to Upper Case.

Eg: txt = "Hello my friends”
= txt.uppen()
prink{x)
10 | lower() It converts all the characters of a string to Lower case.

Egl: txt = "Hello my FRIENDS"
x = txtlower()

primt(x)
11 split{separator, Splits the string according to the delimiter str. The
maxsplit] string splits according to the space if the delimiter is

not provided. It returns the list of substring
concatenated with the delimiter.

separator :Optional. Specifies the separator to use
when splitting the string. By default any whitespace is
a separator

maxsplit :Optional. Specifies how many splits to do.
Default value is -1, which is "all eccurrences™

egl: txt = "apple#banana#cherry#orange”

x = txt.split("#")

print(x)

EgZ: txt = "apple#banana#cherry#orange”

setting the maxsplit parameter to 1, will return a list
with 2 elements!

x = batsplit{"#", 1)

print{x)

if statement: It s used to test a particular condition and If the condition is true, it
executes a block of code known as if-block. The condition of if statement can be any
walid logical expression which can be either evaluated true or false.

e

=

Cormtisan - 1

i condition
I=m trusn

Y eovrditizn
(-

Bhock of o

—
Figure: Flowchart of if statement
The syntax of the if-statement is given below.

if expression:

statement

A.¥-2020-2021

Example 1: Program to print even number. (even.py)

num = int{input{*enter the number?"}}
if num%2 == 0:

print(*Mumber is even”)

The if-else statement

The if-else statement provides an else block combined with the if statement which is
executed in the false case of the condition. If the condition is true, then the if-block is
executed. Otherwise, the else-block is executed.

Carlitian

W condition
s Erue

I condition W Eslesck
e

wise Dlock

Figure: Flowchart of if-alse statement
The syntax of the if-else statement is given below.
if condition:
#block of statements
else:
#another block of statements (else-block)

A.¥-2020-2021

Example 1: Program to check whether a person is eligible to vote or not.

Example 2: Program to print the largest of the three numbers. (largenum.py)

a = int(input{"Enter a : "))
b = int{input{“Enter b : *))
€ = int{input{*Enter c : "))
if a=b and a>c:

print{"a ks largest")
if b=a and b=c:

print{“b is largest")
if c>a and c=b:

print("c is langest™)

age = int {input{“Enter your age? "))

if age == 18:
print{"¥ou are eligible to vobe 1)
else:

print[*Sorry ! you hawve to wait 11%)

Example 2: Pragram to check whether a number (s even or not.

num = int{input{“enter the number?*)
if num%h2 == 0:

print “Mumber is even...")
alse:

print("Mumber is odd...")

The elif statement

The elif statement enables us to check multiple conditions and execute the specfic block
of statements depending wpon the true condition among them. We can have any number
of elif statements in our program depending upon our need. However, using elif is
optional. The &if staterment works like an if-else-if ladder statement in . It must be
succeeded by an if statement.

The syntax of the if..elif...else statement is given below.

il expression 1:

¥ block of statements
elil expression 2:

¥ block of statements
alil expression 3:

¥ block of staternents
elsa:

¥ block of statements

© l =]
Carrelilieer l
Cerreiiilaszn l
Dasrelition
| Elatermenl 1 | | £ | | = |

"l.li]

Figure: Flowchart of if...ellf...else statemeant

A.¥-2020-2021

Example 1 Example of

Python Mested if statements

We can hawe if. .elif. . else statement inside another if._elif. else statement. This is
called nesting in computer programming. Any number of these statements can be nested
inside one another. Indentation Is the anly way to figure out the level of nesting. They
can get confusing, so they must be avolded unless necessary.

Python Mested if Example

number = int{input("Enter the number @ "})
if numiber==10:
print(“number is equals to 10")
elif number==50:
print(“number is equal to 507);
elif number==100:
print(“number is equal to 100");
alse:
print(“number is not equal to 10, 50 or 100%);

""In this program, we Input & number check if the number is positive o
Negative or zero and display an appropriste message
This time we use nested if statement '

num = float{input{*Enter a number: *))
if num == 0:
if num == 0:
print({*Zero®)
else:
print(*Pasitive number®)
else:
prink[“Megative number*)

4.2.1 while loap, nested while loop, break , continue statements.

while loop : The Python while loop allows a part of the code to be executed wntil the

given candition returns false. It (s also known as a pre-tested loop.

It can be viewed as a repeating if statement. When we don't know the number of

iterations then the while loop ks most effective to use.
Synitac:
while expressian:

SLElEments
Here, the statements can be a single statement or a group of statements. The
expression should be any valid Python expression resulting in true or false. The true s
any non-zero value and false is 0.

 amion 1tk

\ J—

Loop ady

om

.

Figure: Flowchart of while loop

Example

i=1

number = int{input{*Enter the number:*))

while | == 10:
prink("%hd X %hd = %d \n*"%(number, |, number = i)}
| =i+1

nested while loop
Declaration
The syntax of the nested- while loop in Python as follows:
Syntax
wihile expression:

while expression:

statement(s)

statement(s)

i+=1
continue

print(‘Current Letter @', strl[i])

i +=1

2. Break Statement - When the break statement is encountered, it brings control
out of the loop.

The contrel transfer is transferred

when break statement soon it seest
i=0

strl = ‘javatpoint’

while i = len{strl)

How works nested while loop
In the nestad-while loop in Python, Two type of while statements are availabla:

1. Outer while laop

2. Inner while loop
Initially, Quter loop test expression |s evaluated only once.
When It return true, the flow of control jumps to the inner while loop. The inner while
loop executes to completion. However, when the test expression is false, the flow of
control comes out of inner while leop and executes again from the outer while loop only
once. This flow of control persists until test expression of the outer loop is falsa.
Thereafter, if test expression of the owter loop is false, the flow of control skips the
execution and goes to rest.
Examplel:

=1
while <=3 :
prinkfi ,"Outer loop s executed only once™)
=1
while j<=3:
print(j ,“Inner loop is executed until to completion®)
j#=1
I+=1;

Example2: nested while loop to find the prime numbers from 2 to 100

I=2
whilefi = 100):
=2
while(] <= (iff)):
if not{i%&)): break
j=1+1
it () = ifj) - print i, * is prime®
i=i+1

print "Good bye!"

Loop Control Statements

We can change the normal sequence of while koop's execution using the loop control
statement. When the while loop's execution is completed, all automatic objects defined
in that scope are demolished. Python offers the follawing control statement to wse within
the while loop.

1. Continue Statement - When the continue statement |s encountered, the control
transfer to the beginning of the loop. Let's understand the following example.

prints all letters except 'a' and 't'
i=0
strl = “javatpoint’

while | < len(stri):
if strlfi) =="a' or strl[i] == "t":

I —

Lacp mody

I
[

Figure: Flowchart of for loop
1: Iterating string using for loop

I strlfi] ==t str = "Python®
I+=1 for | in str:
break prink(i}
print('Current Letter @', stri[i])
l+=1 Ex le= 2: Program to print the table of the given
list=[1,2,3,4,5,6,7,89.10]
3. Pass t - The pass is used to declare the empty loop. It is also n=5
used to define empty class, function, and control In Python prog ning, the for | in it
pass statement is a null statement. The difference between a comment and a pass R
statement in Python is that while the interpreter ignores a comment entirely, pass is not =1
ignored. However, nothing happens when the pass is executed. It results in no operation print(c)

[NOP).

Syntax of pass

pass

‘We generally use it &s a placeholder.

Suppose we have & loop or a function that is not implernented yet, but we want to impherment it in
the future. They cannot have an empty body. The interpreter wauld give an error. So, we use the
pass statement to construct & body that does nothing.

Suppose we have a loop, and we do not want to execute right this mament, but we will execute in
the future, Here we can use the pass. Consider the following example.

Example of pass

pess is just & placehol
walues = {P, Y, W,
for val in values:

pass

r far we will add functionality later.
"y

For loop Using range() function

The range() function: The range{) function is used to generate the sequence of the
numbers. If we pass the range{10), it will generate the numbers from 0 to 9.
Syntax:

range(start, stop, step size)

1.
2.

3.

The start represents the beginning of the iteration.

The stop represents that the loop will iterate till stop-1. The range(1,.5) will generate
numbers 1 to 4 iterations. It is optional.

The step size is used to skip the specific numbers from the iteration. It is optional to
use. By default, the step size is 1. It is optional.

Example-1: Program to print numbers in

4.2.2 for loop, range, break, continue, pass and else with for loop, nested for loop.
for loop: The for laop In Python is used to iterate the statements or 3 part of the
program several times. It is frequently used to traverse the data structures like list,
tuple, or dictionary. The syntax of for lsop in python s given bebow.
for iterating_var in sequence:

statement(s)

for | in renge(10):

prink(i,end ="}

for i in range{1,11):
c=nt
printfn,"

int{input(“Enter the number “j}

le-3: Program to print even number using step size in range().
n = intlinput|"Enter the number *))
for i in range(2,m,2):
print{i}

Mested for loop in python

Python allows us to nest any number of for loops inside another for loop. The inner loop

is executed n number of times for every iteration of the outer loop. The syntax is given

below.

Syntax

for iterating_varl in sequence:
for iterating_var2 in sequence:

#block of statements
#Other statements

#outer loop
#inner loop

le- 1: Nested for loop to print Trangle Pattern.
rows = int{input{"Enter the rows:")] # User input for number of rows
Outer loop will print number of rows
for il in range(0,rows+1):
Inner loop will print number of Astrisk
for § inrange(i):
print("**,end = ")
print()
“Example-1: Program to number pyramid.
rows = Int{input("Enter the rows®))
for | in range{0,rows+1):
for § in range(i):
print{i,end = ")
print()

Using else statement with for loop

Unlike other languages like C, C++, or Java, Python allows us to use the else statement
with the for loop which can be executed only when all the iterations are exhausted. Here,
we must notice that If the loop contains any of the break statement then the else
statement will not be executed.

% List methods (append, clear, copy, count, index, insert, pop, remove,
reverse, sort).

1. Adding elements to the list

Python provides append() function which is used to add an elemeant to the list. However,

the append() function can only add value to the end of the list.

The syntax of the append() method is:

list. appand|item)

append|) Parameters

The method takes a single argument

item - an item to be added at the end of the list

The item can be numbers, strings, dictionaries, another list, and so on.

Return Value from append()

The method doesn’t retum any value (returns Mone).

Consider the fallowing example in which, we are taking the elements of the list from the
uger and printing the list on the console.

Is =[] #Dedaring the empty list
#Mumber of elements will be entered by the user
n = Int{input{*Enter the number of elements in the list:"))
for loop to take the input
for | in range({0,n):
The input is taken from the user and added to the list as the item
|s.append{input{“Enter the item:"))
print{“printing the list items..")
traversal loop to print the list items
for i in sz
print{i, end = *)
Output:
Enter the number of elements in the list:5
Enter the item: 25
Enter the itam:46
Enter the item:12
Enter the item:75
Enter the item:42
printing the list items
25 46 12 75 42

2. Python List clear()

The clear() method removes all items from the list.
The syntax of clear() method is:

list. cleary)

Example 1 clear() Parameters
for il in range(D,5): The clear() method doesn't take any parameters.
prink(i) Return Value from clear()
else The clear() method only empties the given list. It doesn't return any value.
print("for loop completely exhausted, since there is no break.") Example 1: Working of clear() method
Example 2 # Defining a list
for | in range{0,5): list = [{1, 2}, {"a"), ['L.1','2.2']]
print{i} # dearing the list
break; list.clean)
lsa: print{'List:’, list)
Oui :
List: []
[e T T T Y
print count

FETIRLE TR PO ST AT L)
3. Python List copy()

The copy(}) method retums a shallow copy of the list.

A list can be copled using the = operator. For example,

old_list = [1, 2, 3]

new_list = old_list

The problem with copying lists in this way is that if you modify new_list, old_list is also
modified. It is because the new list is referencing or pointing to the same old_list objsct.

old_list = [1, 2, 3]
naw_list = old_lst

new_listappend('a') # add an element to list
print('New List:', new_list,
print('Old List:’,

Id_list)

Output:
Old List: [1, 2, 3, 'a"]
Mew List: [1, 2,3, 'a']

However, if you need the original list unchanged when the new list s modified, you can
use the copy() method.

The syntax of the copy() method is:

new_list = list.oopy()

copy() parameters
The copy(}) method doesn't take any parameters,

Return Value from copy()
The copy() method retums a new list. It doesn’t modify the ariginal list.
Example 1: Copying a List

mixed list
my_list = [‘cat’, 0, 6.7]

copying a list
naw_list = my_list.copy()

print{'Copled List:', new_lst)
Oui

Copiad I-_Ist: [*cat’, O, 6.7]

IF you modify the new_list in the above example, my_list will not be modified.

4. Python List count()

The count(} method returns the number of times the specified element appears in the
list.

The syntax of the count() method is:

list.count{element))

county{) Parameters
The count() method takes a single argument:
element - the element to be counted

Return value from count()
The count(} methed returns the number of times element appears in the list.

Example 1: Use of count()

vowels = [a', 'e’, 1", o', T,)
count element 'V
count = vowels.count('l')

print('The count of | is:", count)
count element 'p'

count = vowels.count('p’)

print count

print(‘The count of p is:’, count)
Output:

The count of | 52 2

The count of pis: 0

5. Python List index()

The index() method returns the index of the specified element in the list.
The syntax of the list index() method is:

list.index{alement, start, end)

list index() parameters

The list index() method can take a maximum of three arguments:
1. elament - the element to be searched

2. start {optional) - start searching from this index

3. end (optional) - search the element up to this index

Return Value from List index()

The index() method returns the index of the given element in the list.

If the element is not found, a ValueError exception |5 raised.

Mote: The index() method only returns the first oocurrence of the matching element.

Example 1: Find the index of the element

wowels = ['&', 'e', 1, ‘o', 1", 'u'] # vowels list
Index of 'e" in vowels
index = vowels.index('e"}
print('The index of &', index)
index = vowels.index{'1")
print("The index of it index)
Output:
The index of &: 1
Traceback (most recent call last):
File *C: fUsars/AMD/ Desktop,/mypython/ LIS T/ /indes. py ", ling 5, in <module=
index = vowels.index('l"} # element "I’ is searched & index of the first 'I' Is returned
ValueError: 'T' is nok in list

Example 2: Index of the Element not Present in the List

wowels = ['a', 'e', T, ‘o', 'u]
index = vowels.index{'p’)
print{'The index of p=’, index)
Output:

WalueError: 'p’ is not in list

6. Python List insert()

The list insert{) method inserts an element to the list at the specified index.

The syntax of the insert() method is

list.insert{i, elem)

Here, elem is inserted to the list at the ith index. All the elements after elem are shifted
to the right.

insert() Parameters

The insart() method takes two parameters:

index - the index whare the elemeant needs to be inserted

element - this is the element to be inserted in the list

Notes:

If index |5 0, the element ks inserted at the beginning of the list.

If index is 3, the element is inserted after the 3rd element. Its position will be 4th.

Return Value from insert()
The insart{) mathod doesn't return anything; returns Mone. It only updates the current
list.

Example 1: Inserting an Element to the List

remove() Parameters

The remove{) method takes a single element as an argument and removes it from the
list.

If the element doesn't exist, it throws ValueError: list.remove(x): x not in list exception.
Return Value from remove()

The remove() doesn't returm any value (returns None).

Exampie 1: Remove element from the list

wowel = [a, e, 7, '] & vowel list
'0' Is inserted at index 3
the position of ‘0" will be 4th

vowel.insert(3, ')

print{'Updated List:', vowel)
Output:
Updated List: ['a", 'g", V', ‘0", "w']

animals = ['cat’, "dog’, ‘rabbit’, 'guinea pig'] # animals list
animals.remove(‘rabbit’) # ‘rabbit’ is removed

print('Updated animals list: *, animals) # Updated animals List
Output:

Updated animals list: ['cat’, "dog’, ‘guinea pig']

Example 2: Deleti ! that doesn‘t exist

7. Python List pop()

The pop() method removes the item at the given index from the list and returns the
removed (tem.

The syntax of the pop() method is:

list.pop(index)

popi) parameters

The pop() method takes a single argument (index).

The argument passed to the method is optional. If not passed, the default index -1 is
passed as an argument [index of the last item).

If the index passed to the method & not in range, it throws IndexError: pop index out of
range exception.

Return Value frem

The pop() method returns the item present at the given index. This item is also removed
from the list.

Example 1: Pop item at the given index from the list

languages = ["Python', Java’, 'C++', "French’, 'C'] # programming languages list
return_valug = languages. pop{3) # remove and retum the dth item

print('Retum Value:', return_value)

pring(’Updated List:', languages) # Updated List

o .

Return \}alue: French
Updated List: [‘Python’, ‘Java’, 'C++, "'C')

animals = ['cat’, "dog’, ‘rabbit’, ‘guinea pig'] # animals list
animals.remove(*fish’) # Deleting ‘fish’ element
print('Updated animals list: *, animals) & Updated animals List
Output:
Traceback (most recent call last):
File "....... “, ling 5, in <module:>
animal_remowe('fish")

ValusErrar: list.remaove(x): ® not in list
“Here, we are getting an eror because the animals st doesn't contain Tish.
NOTE:
= If you need to delete elements based on the index (like the fourth element), you can
use the pop() method.
& Also, you can use the Python del statement to remove items from the Nst.
Example 3: Consider the following le to this

Note: Index in Python starts from 0, not L.
If you need to pop the 4th element, you need to pass 3 to the pop() method.

8. Removing elements from the list

Python provides the removel() function which is used to remove the first matching
element from the list.

The syntax of the remove() method is:

list.remove{element)

sort() Parameters

By default, sort() doesn't require any extra parameters. However, it has two optional
parameters:

1. reverse - If True, the sorted list is reversad (or sorted in Descending order)

2. key - function that serves as a key for the sort comparison

Return value from sort()

The sort() methad doesn't return any value. Rather, it changes the original list.

If you want a function to return the sorted list rather than change the original list, use
sorted().

Example 1: Sort a given list

list = [0,1,2,3,4]
print(“printing original list: “);
for i in list:
print(i,end=" "}
list.remave(2)
print{"\nprinting the list after the remaval of first element...")
for i in list:
print(i,end=""}
OUTPUT:
printing original lst:
01234
printing the list after the removal of first element...
0134

vowels = ['g', " 1T # vowels list
wowels_sort() # sort the vowels
print('Sorted lst:’, vowels) # print vowels

Dutput:
Sorted lst: ["a",

't e,]

Sort in Descending order

The sort() method accepts a reverse parameter as an optional argument.
Setting reverse = True sorts the list in the descending arder.
list.sort(reverse=Trug)

Alternately for sorted(), you can use the following code.

sorted{list, reversa=True)

wowels = ['e', 'a’, 'u', "
wowels_sort{reverse=True)
print{'Sorted list {in Descending):', vowels)
Dutput:

Sorted list (in Descending): ['u’,

e, "

10. Python List reverse()

The reverse() method reverses the elements of the list.

The syntax of the reverse() method is:

list.reverse()

reversa{) parameter

The reverse() method doesn't take any arguments.

Return Value from reverse()

The reverse() method doesn't return any walue. It updates the existing list.
Example 1: Reverse a List

systems = ['Windows', ‘mac0Ss’, ‘Linux’]
print{'Original List:', systams)
systems.reverse() # List Reverse
print{'Updated List:", systems) # updated list

Oul 2
Original List: ["Windows', 'macOSs’, 'Linux’]
‘Linux', 'mac0s’, ‘Windaws']

NOTE: There are other several ways to reverse & st [U=ing SIcing Operator & reversed()]

9. Python List sort()

The sort() method sorts the elements of a given list in a specific ascending or descending
order.

The syntax of the sort{) method is:

list.sort{key=..., reverse=...)

Alternatively, wou can also use Python's built-in sorted() function for the same purpase.
sorted{list, key=..., revarse=_..)

