Unit-3 Python Interaction with SQlite 39

Unit-3
Python Interaction
with SQLite

Jump2Learn Publication [www.jump2learn.com])

40

Unit-3 Python Interaction with SQLijte
Module

Python module can be defined as a python program file which contains a pythgp code
including python functions, class, or variables. In other words, we can say that our

Python code file saved with the extension (.py) is treated as the module. We May haye
a runnable code inside the python module.

Modules in Python provides us the flexibility to organize the code in a logical way.

To use the functionality of one module into another, we must have to import the
specific module.

Create a Module

To create a module just save the code you want in a file with the file extension py:
Example

Save this code in a file named mymodule.py
def display(name):
print("my name, " + name)

Here, we need to include this module into our main module to call the method
display () defined in the module named file.

Loading the module

Python provides two types of statements as defined below.

1. The import statement

2. The from-import statement

The import statement

The import statement is used to impo
another. Here, we must notice that we ¢

rt all the functionality of one module i"
file by importing that file as the module j

e
an use the functionality of any python sou’

nto another Python source file.
We can import multiple modules wit

h a single impo module
loaded once regardless of the number of port statement, but a

times, it hag been imported into our file-
Syntax:

import modulel,module?, module3

Unit-3 Python Interaction with SQLite - a1

Hence, it we need to call the function display () defined in the file mymodule py, we
have to import that file as a module into our module as shown in the example below

Example:
import file;
name = input("Enter the name: ")
file.display(name)

Output:

Enter the name: mayank
my name , mayank

The from-import statement

Python provides the flexibility to import only the specific attributes of a module. This
can be done by using from - import statement.

Syntax :
from< module-name> import <name 1>, <name 2>..,<name n>
Example:

from file import display;
name = input("Enter the name: ")
file.display(name)

Output:
[nter the name: mayank
my name , mayank

We can also import all the attnibutes from a module by using *.
Consider the following syntax.

from<modules import *

Jjump?2learn Publication [www.mmp)ledr(Lmrnl

42

Unit-3 Python Interaction with § Lite

PYTHONPATH

PYTHONPATH is an environment variable which you can set to ad<.:1 addition,,
directories where python will look for modules and packages. For most Installat

ions,
You should not set these variables since they are not needed for Python ¢, run.
Python knows where to find its standard library.

The only reason to set PYTHONPATH is to maintain directories of custom Pythop

libraries that you do not want to install in the global default location (i.e., the site.
packages directory)

Setting PYTHONPATH on a windows machine follow the below steps:

Step 1: Open your This PC (or My Computer) and write click and click on properties.
Step 2: After the properties window pop up click on to Advance S

&3 Symtem

ystem Settings:

- a
CentzolParel » Sputem ond Sequrzy > Stem

3,

T

Sesteh {grtpl Prral
Cerzecl Paned Heme

View basic information abaut your computer

0
€ Conce Manrge Windoas edtion
€ Pemsterenng Vindon: 1 e -- »
B $tem pretection € 2038 Marosett Corporation. L0 rights resarved. Wl n d OWS 1 O
€ Rdverced sytem seing: ..
Syftesn
Processor intellR) Cere(D) 3-RI00 CPU § 230GHz 230 Ghe
Instalied memery (FARY): 8.0 GB (726 6B uzabse)
Syemtpe €4-tt Oerabng System, vé<-dazed processor
Pen srd Teuch: Ho Pen o Touch bnput s avasilable Fou this Tispley
Cemputer neme, demyin, Jnd work3teup ettings
Cemputer nime: DESKTOR.U225087 -
Full computar mame: DUSKTOP-U242057
Cerrpraer deseripien
Worlkgroup WORGROUP
Vindews actrvatn
Wedont w acta/ated Ferd the Maicsan fattesie Leense Teamy,
ProductiD: 03331 2007000000 AAT43 0;\;\'\ ¥
Loty g Mantensnce
: lick on the envir i g window
Step 3: Now clic onment variable button in the new popped up
as shown below:

Jump2Learn Publication Www.jump2learn com]

Unit-3 Python Interaction with SQLite 43

Syctem Properties X
Computer Name Hardware Advanced System Protection Remole

You must be logaed on as an Administrator to make most of these changes.
Performance
Visual effects, processor scheduling. memory usage. and vilual memory

User Profiles
Desktop settings relaled to your sign-in

Startup and Recovery
System startup. system failure, and debugging information

i Seflings... |

Environment Variables..

0K | Cancel | Aoply

Step 4: Now in the new Environment Variable dialog box click on New as shown
below:

Environment Varizbles X

User variables for Administrator

Variable Value

Path C:\Users\Administrato\AppData\Laca\Microsoft\WindowsApps; D:...
PYTHONPATH C:\Users\Raju Kumar

TEMP C\Users\AdministratonAppData\Local\Temp

P C:\Users\Administraton\AppData\Local\Temp

New.., Edit... Delete
Lystern vangbles

Vaniable Value "~ 1
Combpec CAWINDOWS\system3Acmd. exe J
Drverbata CAWIndows\System 32\ Dive s\ DaverDyta ‘
WUMBER OF PROCESSORS 4 !
(V] Windows NI |
Hath CAWINDOWS sy e 32, CAWINDOWS, CAWINDOW S\ System 1AL |
PATHLAT COM LAL BATA MO, VBS, VUR DS 05 WSE AYSHLAISC ‘[
PROCESSOR ARCHITECTURE AMDGA v

New kit Delete

l OK J Cancel

Jump2Learn Publication [www.jump2learn.com]

" Unit-3 Python Interaction with SQLite

Step 5: Now in the variable dialog box add the name of the variable as PYTHONPATY
and in value add the location to the module directory that you want python to check

every time as shown below:

Edit User Variable

-
Variable name: ‘ PYTHONPATH‘ S ———
| PYTHONPATH S

- -

Variable value: CAUsers\Administrator\Desktop |
Browse Directory... | Browse File.. ‘ Cancel

Your PYTHONPATH is set.

Concepts of Namespace and Scope

In python we deal with variables, functions, libraries and modules etc. There is 2
chance the name of the variable you are going to use is already existing as name of
another variable or as the name of another function or another method. In such
scenario, we need to learn about how all these names are managed by 3 python

program. This is the concept of namespace.

lts Name (which means name, a unique identifier) + Space (which talks something
related to scope). Here, a name might be of any Python method or variable and spacé
depends upon the location from where is trying to access a variable or a method.

Following are the three categories of namespace

. Local Namespace: All the names of the functions and variables declared DY?
program are held in this namespace. This namespace exists as long &
program runs. < /p>

. Global Namespace: This namespace holds all the names of functions a“d1
other variables that are included in the modules being used in the pyth®"
program. It encompasses all the names that are part of the Local namespace'

e 1 - 1able
. Built-in Namespace: This is the highest level of namespace which is avalla:jb‘as

with default names available as part of the python interpreter that is loade M
the programing environment, [t encompasses Global Namespace which' tu

encompasses the local namespace.

— /

Jump2Learn Publication [www

ump2learn.com]

|

Unit-3 Python Interaction with SQLite

45

Built-in
namespace

Global

namespace

Local
namespace

Type of Namespaces

Scope of Namespace

The namespace has 2 lifetime when it is availakle. That is also called the scope. Also
the scope will depend on the coding region where the variable or object is located.
You can see in the below program how the variables declared in an inner loop are
available to the outer loop but not vice-versa. Also please note how the name of the

outer function also becomes part of a global variable.

Example

prog_var = 'Hello'

defouter_func():

outer_var ='x'

definner_func():

inner_var ="y'

print(dir(), ' Local Variable in Inner function')

inner_func()
print(dir(), ‘Local variables in outer function')

outer_func()
print(dir(), ‘Global variables ')
Output

['inner_var'] Local Variable in Inner function

['inner_func', 'outer_var'] Local variables in outer function

Jump2Llearn Publication [www.jump2learn.com|

46

Unit-3 Python Interaction with SQite

1 0 ClL 1
['__annotations_ ', ' builtins__','__cached__’,

’

_doc__','__file_ ',
1 1 1 1

'__loader_',' name_ ', ' package_,
Global variables

Packages in Python

__spec__', 'outer_func', 'prog_var.]

A package is a hierarchical file directory structure that defines a single Python

application environment that consists of modules and subpackages and gy
subpackages, and so on.

Consider a file Display.py available in packl directory. This file has following line of
source code —

def disp():
print "student doing bca"

Similar way, we have another two files having different functions with the same
name as above -

e packl/al.py file having function al()
s> pack1l/b1.py file having function b1()

Now, create one more file __init__.pyin packl directory -

e packl/__init__.py

To make all of your functions available when you've imported packl, you need to
put explicit import statementsin __init__.py as follows -
Now import your pack1 Package.

import packl

pack1.disp()
packl.al()
packl.b1()
Output:
student doing bca
this is from al
this is from b1
In the above example, we have taken example of

. . : it
Itipl asingle functions in each file, bt
. 1) ultiple

you can kLLp m

. functions in your files. Yoy can also define different Pytho"
classes in those files and then you can Create your Packages out of those classes:

/‘/___/

JumpzLearn Publication [Www.jump2learn.com]

o pr

Unit-3 Python Interaction with SQLite 47

Importing sqlite3 module

SQlite3 can be integrated with Python using sqlite3 module, which was written by
Gerhard Haring. It provides an SQL interface compliant with the DB-API 2.0.
You do not need to install this module separately because it is shipped by default
along with Python version 2.5.x onwards.
To use sqlite3 module, you must first create a connection object that represents the
database and then optionally you can create a cursor object, which will help you in
executing all the SQL statements.
Importing sqlite3 :

import sqglite3

connect()

This routine opens a connection to the SQLite database file. You can use

":memory:" to open a database connection to a database that resides in RAM instead
of on disk. If database is opened successfully, it returns a connection object.
When a database is accessed by multiple connections, and one of the processes
modifies the database, the SQlite database is locked until that transaction is
committed. The timeout parameter specifies how long the connection should wait for
the lock to go away until raising an exception. The default for the timeout parameter
is 5.0 (five seconds).

If the given database name does not exist then this call will create the database. You
can specify filename with the required path as well if you want to create a database
anywhere else except in the current directory.
Syntax:

sqlite3.connect(database [,timeout ,other optional arguments])
Example:

import sqlite3

conn = sqlite3.connect(student.db')

print "Opened database successfully";
Now connection is created with the student database.

Execute()

This routine executes an SQL statement. The SQL statement may be parameterized (i.
e. placeholders instead of SQL literals). The sqlite3 module supports two kinds of
placeholders: question marks and named placeholders (named style).

Jump2Learn Publication [www.jump2learn.com]

48

Unit-3 Python Interaction with SQjte

Syntax:

cursor.execute(sql [, optional parameters])

For example - cursor.execute("insert into student values (?, ?)", (who, age))

fetchone()

fetchone() method returns a single record or None if no more rows are available,
To fetch a single row from a result set we can use cursor.fetchone(). This method
returns a single tuple.

It can return a none if no rows are available in the resultset. cursor.fetchone)

increments the cursor position by one and return the next row.
Syntax:

cursor.fetchone()
Example:
import sqlite3

try:
connection = sqglite3.connect(student.db')

cursor = connection.cursor()
print("Connected to database")

query = "SELECT * from student"
cursor.execute(query)
print("Fetching single row")
record = cursor.fetchone()
print(record)

print("Fetching next row")
record = cursor.fetchone()
print(record)

cursor.close()

except sqglite3.Error as error:

print("Failed to read data from table", error)
finally:

if connection:

connection.close()

print("The Salite connection is closed")

pP2learn Publication www jump?le]
i arn.com

Unit-3 Python Interaction with SQLite

Output:

Connected to database
Fetching single row
(1, 'amit', 'BCA',88)

Fetching next row
(2, 'rani', 'MCA',98)
The Sqlite connection is closed

fetchall()
fetchall() method fetches all (remaining) rows of a guery result, returning a list. An
empty list is returned when no rows are available. Get resultSet (all rows) from the

cursor object using a cursor.fetchall().

Example:
import sqglite3

try:

connection = sqlite3.connect('student.db')
cursor = connection.cursor()
print("Connected to sqQlite")

query = "SELECT * from student"
cursor.execute(query)

records = cursor.fetchall()
print("Total rows are: " len(records))
print("Printing each row")

for row in records:

print("1d: ", row[0])
print("Name: ", row[1])
print("course: ", row(2])
print("marks: ", row(3])
print("\n")

cursor.close()

except sqlite3.Error as error.
print("Failed to read data from table", error)

Jump2Llearn Publication [www.jumleearn.com]

20 Unit-3 Python lnteraction%

finally:
if connection:
connection.close()

print("The Sqlite connection is closed")

Output:

Connected to database
Total rows are: 3

Printing each row
Id: 1

Name: raj
course: BCA
marks: 88

Id: 2

Name: rani
course: MCA
marks: 99

Id: 3
Name: deep
course: BCA
marks: 50

The Sqglite connection is closed

Create a table using python

Create a table "STUDENT" within the database "demo_db".
Create a python file "createtable.py", having the following code:
import sglite3

conn = sqlite3.connect('demo_db ')
print "Opened database successfully";

conn.execute("CREATE TABLE STUDENT

/

arn Publication [www.jum p2learn.com]

Jump2le

Unit-3 Python Interaction with SQlite

(ID INT PRIMARY KEY NOT NULL,
NAME TEXT NOT NULL,

AGE INT NOT NULL,

ADDRESS CHAR(50)

)"

print ("Table created successfully")

conn.close()

A table "STUDENT " is created in the "demo_db" database.

Insert Records

Insert some records in " STUDENT " table.

Create a python file "insert.py", having the following code:
import sqlite3
conn = sqlite3.connect('javatpoint.db')

print ("Opened database successfully")

conn.execute("INSERT INTO STUDENT (ID,NAME,AGE,ADDRESS) VALUES (1,
27, 'surat')")

'aditya’,

conn.commit()

print ("Records inserted successfully")
conn.close()
output:

Opened database successfully

Records inserted successfully

Jump2Learn Publication [www.jump2learn.com]

Unit-3 Python Interaction with SQlLite
52

Select Records) . 4

To fetch and display your records from the table "STUDENT" by using SELECT
statement. _ '

Create a python file "select.py", having the following code:

import sqlite3

conn = sqlite3.connect('javatpoint.db')

data = conn.execute("select * from Employees")

for row in data:
print ("ID =", row([0])
print ("NAME =", row[1])
print ("AGE =", row[2])
print ("ADDRESS =", row(3] , "\n")

conn.close();
Output:

ID=1

NAME =aditya
AGE=27
ADDRESS =surat

ID =2

NAME =raj
AGE=32
ADDRESS =vapi

Delete Records

Delete some recordsin " STy DENT " table

Create 4 n . "
a python file delete.py » having the following code;
import sqlite3

conn = sqlite3.connect(‘javatpoint.db')

print ("Opened database successfully

id

')

=int(input(“Enter id to delete:”

)

e

u [

Unit-3 Python Interaction with SQLite 53

conn.execute("DELETE FROM STUDENT WHERE ID = ",id)

conn.commit()

print ("Total number of rows deleted " conn.total_changes)

conn.close()
Output:

Opened database successfully
Enter id to delete:1

Total number of rows deleted :1

total_changes Returns the total number of database rows that have been modified,
inserted, or deleted since the database connection was opened

commit()
commit() method commits the current transaction. If you don’t call this method,
anything you did since the last call to commit() is not visible from other database

connections. If you wonder why you don’t see the data you've written to the
database, please check you didn’t forget to call this method.

Example:

import sqlite3
con = sqlite3.connect('demo_db')
cur = con.cursor()

con.execute("""CREATE TABLE student
(id integer, value text)""")

con.execute("INSERT INTO student VALUES (1, 'mehul’)")
con.commit()

result = con.execute("SELECT * from student")
for row in result;
print (row)

Output:
(1, 'mehul')

Here we create one table in demo_db database and insert one record using execute()
method and then commit() method call to commits the current transaction and then
data was display from database using select query using execute () method.

Jump2Llearn Publication [www.jumpZIearn.com]

Unit-3 Python Interaction with SQLite
54 §

Exercise

short Question
1. Define Module.

2. Explain PYTHONPATH.

3. Define Packages.

4. Difference between fetchone() and fetchall() methods.
5. Explain commit () method

Long Question

How to load module in code?

Explain Concepts of Namespace and Scope.

Explain Packages in Python.

Explain connect () and execute() methods of sqlite3 module.

Write a code to Insert, update, delete using execute () method in below table
Student_tbl(id, name, dob, class, gender, city)

g hwN e

Jump? e

a4 Py
ni ubhculion [w

Ww j
Jump2|earn o

m]

